نوع مقاله : مقاله کامل پژوهشی

نویسندگان

گروه مهندسی مواد، دانشکده فنی و مهندسی، دانشگاه ملایر، ملایر، ایران.

چکیده

آلیاژ نایتینول (NiTi) به دلیل در بر بر­داشتن خواصی همانند انعطاف انعطاف ­پذیری فوق فوق­ العاده با کرنش زیاد قابل بازگشت، اثرحافظه­ داری ، ویژگی‌های میرایی بالا، مقاومت خوردگی و زیست­ سازگاری خوب، دارای کاربرد وسیعی در ساخت قطعات پزشکی و بایو مواد، همانند استنت­ ها، ایمپلنت ­های ارتوپدی و ابزارهای جراحی است. اما یکی از مهم­ترین مشکلات آلیاژ نایتینول، آزاد شدن یون‌های نیکل ناشی از تخریب سطح نمونه است، که این یون می‌تواند به عنوان بازدارنده در فرایندهای آنزیمی موثر در سنتز پروتیین و تکثیر سلول دخالت نماید. اعمال پوشش و کاشت یونی از مهم­ترین روش­ ها جهت بهبود سطحی و رفتار زیستی آلیاژ NiTi است. در این تحقیق بهبود سطحی از طریق کربن ­دهی به وسیله فرایند کاشت یونی پلاسمایی (CPIII) بر روی سطح آلیاژ NiTi صورت گرفته و سپس رفتار نانومکانیکی پوشش بوسیله توسط میکروسکوپ نیروی اتمی (AFM) و روش های نانودندانه­ گذاری و نانو نانو­خراش و رفتار خوردگی به وسیله آزمون پلاریزاسیون در محلول 5/0 مولار نمک طعام مورد بررسی قرار گرفته است. نتایج بیانگر سطح کاملا همگن، یکنواخت و عاری از نواقص سطحی با عمق کاشت یونی کربن در حدود 50 نانومتر همراه با کاهش میانگین زبری سطحی از 34 به 25 نانومتر است. فرایند کاشت یونی منجر به افزایش سختی و مدول الاستیک به ترتیب 7/80 و 8/21 درصد، کاهش ضریب اصطکاک متوسط از 21/0 به 16/0 و باعث غالب بودن مکانیزم سازوکار سایش برشی همراه با افزایش 85 درصدی بازده مقاومت به خوردگی گردیده است.

کلیدواژه‌ها

عنوان مقاله [English]

Investigation Nano-Mechanical Properties of NiTi alloy Modified by Carbon Plasma Immersion Ion Implantation

نویسندگان [English]

  • Ali Shanaghi
  • Zahra Ahmadian
  • Ali Reza Souri

Department of Materials Engineering, Faculty of Engineering, University of Malayer, Malayer, Iran.

چکیده [English]

Due to ultra-high flexural flexibility, shape memory effect, high damping properties, corrosion resistance and good biocompatibility, the nitinol alloys (NiTi) are widely used in the manufacture of medical and biocompatible materials, such as stent, orthopedic implants and surgical instruments. But one of the most important problems of NiTi alloy is the release of nickel ions due to the destruction of the surface, which these ions can interfere with the enzymatic processes involved in protein synthesis and cell proliferation. The applied coating and ion implantation is one of the most important methods for improving the surface and behavior of the NiTi alloy. In this study, surface of NiTi alloy was modified by carbon plasma immersion ion implantations (CPIII). Then nanomechanical properties of coating were surveyed by atomic force microscopy (AFM) with nano-indentation, nano-scratch methods, and also corrosion behavior was investigated by polarization test in 0.5 M NaCl solution. The results indicate a completely homogeneous, uniform and free surface imperfection with a carbon ion implantation depth of about 50 nm, and decreased average surface roughness from 34to 25 nm. The ion implantation process resulted in increasing the hardness and elastic modulus of 80.7% and 21.8%, respectively, and reducing the average friction coefficient from 0.21 to 0.16, and also making dominant the shear wearing mechanism, with a 85% increase in corrosion resistance efficiency.

کلیدواژه‌ها [English]

  • Carbonizing
  • Plasma immersion ion implantation
  • NiTi alloy
  • Nano-mechanical properties
  1. Shabalovskaya, S.A., Surface, corrosion and biocompatibility aspects of Nitinol as an implant material, Bio-Medical Materials and Engineering, 2002, 12, 69-109.
  2. Pei, Y.L., Luan, Y., Surface modification of NiTi alloys using nitrogen doped diamond-like carbon coating fabricated by plasma immersion ion implantation and deposition, Journal of Alloys and Compounds, 2013, 581, 873–876.
  3. Witkowska, J., Sowi´nska, A., Czarnowska, E., Płoci´nski, T., Borowski, T., Wierzcho´n, T., NiTi shape-memory alloy oxidized in low-temperature plasma with carbon coating: Characteristic and a potential for cardiovascular applications, Applied Surface Science, 2017, 421, 89–96.
  4. Yoneyama, T., Miyazahi, S., Shape Memory Alloys for Biomedical Aplications, Woodhead Publishing Ltd, Cambridge, 2008.
  5. Morgan, N.B., Medical shape memory alloy applications – the market and its products, Materials Science & Engineering. A, Structural Materials, 2004, 378, 16–23.
  6. Elahinia, M.H., Hashemi, M., Tabesh, M., Bhaduri, S.B., Manufacturing and processing of NiTi implants: a review, Progress in Materials Science, 2012, 57, 911–946.
  7. Haider, W., Enhanced biocompatibility of NiTi (Nitinol) via surface treatment and allying, phD Thesis and dissertation, Florida International University, 2010.
  8. Es-Souni, M., Fischer-Brandies, H., Assessing the biocompatibility of NiTi shapememory alloys used for medical applications, Analytical and Bioanalytical Chemistry, 2005, 381 (3), 557–567.
  9. Armitage, D.A., Parker, T.L., Grant, D.M., Biocompatibility and hemocompatibility of surface-modified NiTi alloys, Journal of Biomedical Materials Research Part A, 2003, 66 (1), 129–137.
  10. Denkhaus, E., Salnikow, K., Nickel essentiality toxicity, and carcinogenicity, Critical Reviews in Oncology/Hematology, 2002, 42, 35–56.

 

  1. Kostov, K.G., Ueda, M., Lepiensky, A., Soares, P.C., Gomes, G.F., Silva, M.M., Reuther, H., Surface modification of metal alloys by plasma immersion ion implantation and subsequent plasma nitriding, Surface and Coatings Technology, 2004,186, 204–208
  2. Liu, X.Y., Poon, R.W.Y., Kwok, S.C.H., Chu, P.K., Ding, C.X., Structure and properties of Ca-plasma-implanted titanium, Surface and Coatings Technology, 2005, 191, 43–48
  3. Zhang, W., Chu, P.K., Ji, J.H., Zhang, Y.H., Liu, X.Y., Fu, R.K.Y., Ha, P.C.T., Yan, Q., Plasma surface modification of poly vinyl chloride for improvement of antibacterial properties, Biomaterials, 2006, 27, 44–51
  4. Powles, R.C., McKenzie, D.R., Meure, S.J., Swain, M.V., James, N.L., Nanoindentation response of PEEK modified by mesh-assisted plasma immersion ion implantation, Surface and Coatings Technology,2007, 201, 7961–7969.
  5. Xu, R., Yang, X., Zhang, X., Wang, M., Li, P., Zhao, Y., Wu, G., Chu, P. K. , Effects of carbon dioxide plasma immersion ion implantation on the electrochemical properties of AZ31 magnesium alloy in physiological environment, Applied Surface Science, 2013, 286, 257– 260.
  6. Poon, R. W.Y., Ho, J. P.Y. , Luk, C. M.Y., Liu, X., Chung, J. C.Y., Chu, P. K., Yeung, K. W.K., Lu, W.W., Cheung, K M.C., Improvement on corrosion resistance of NiTi orthopedic materials by carbon plasma immersion ion implantation, Nuclear Instruments and Methods in Physics Research B, 2006, 242, 270–274.
  7. Swiatek, Z., Michalec, M., Levintant-Zayonts, N., Bonarski, J., Budziak,, Bonchyk, O., Savitskij, G., Structural Evolution of Near-Surface Layers in NiTi Alloy Caused by an Ion Implantation, Acta Physica Polonica A, 2011, 120, 75-78.
  8. Shanaghi, A., Sabour Rouhaghdam, A. R., Ahangarani, S., Chu, P.K., Effect of plasma CVD operating temperature on nanomechanical properties of TiC nanostructured coating investigated by atomic force microscopy, Materials Research Bulletin, 2012, 47, 2200-2205.
  9. Le, P. H., Chiu, S.P.,  Jian, S. R.,  Luo, C.W., Lin, J. Y., Lin, J.J., Wu, K.H., Gospodinov, M., Nanomechanical, structural, and transport properties of Bi3Se2Te thin films, Journal of Alloys and Compounds, 2016, 679, 350-357.
  10. Tasi, C. H., Tseng, Y. C., Jian, S. R., Liao, Y. Y., Lin, C. M., Yang, P. F.,  Chen, D. L.,  Chen, H. J.,  Luo, C. W., Juang, J.Y., Nanomechanical properties of Bi2Te3 thin films by nanoindentation,  Journal of Alloys and Compounds, 2015, 619, 834-838.
  11. Huang, H., Dobryden, I., Ihrner, N., Johansson, M., Ma, H., Pan, J., Claesson, P. M., Temperature-dependent surface nanomechanical properties of a thermoplastic nanocomposite, Journal of Colloid and Interface Science, 2017, 494, 204-214.
  12. Kuru, M., Ozmetin, A.E., Ozmetin, A., Sahin, O., The role of heat treatment on the structural and nano-mechanical properties of SmCo5 thin films grown by RF magnetron sputtering technique, Ceramics International, 2017, 43, 3893-3899.
  13. Mallikarjunachari, G., Ghosh, P., Analysis of strength and response of polymer nano thin film interfaces applying nanoindentation and nanoscratch techniques, Polymer, 2016, 90, 53-66