نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشگاه صنعتی شریف، دانشکده مهندسی و علم مواد، تهران، ایران

2 دانشگاه تربیت مدرس، دانشکده فنی و مهندسی، تهران، ایران

چکیده

در این پژوهش هدف این است که سختی پوشش آندایزینگ آلومینیوم به‌کمک روش طراحی آزمایش بهینه شود. متغیرهای متفاوتی بر سختی این پوشش مؤثر می­ باشند که از مهم‌ترین آن‌ها می­ توان به زمان، دما و متغیرهای مربوط به جریان پالسی (دانسیته جریان حداکثر و حداقل، فرکانس و چرخه کاری) اشاره کرد. در این راستا متغیرهای مذکور در سطوح مختلف به‌عنوان ورودی فرآیند طراحی آزمایش در نظر گرفته شد. همچنین اثر این متغیرها بر سختی پوشش آندایزینگ آلومینیوم به‌صورت یک مدل ریاضی به‌عنوان خروجی به‌دست آمد. برای رسیدن به مدل نهایی از روش آنالیز تغییرات به منظور دست‌یابی به بهترین روش برای رسیدن به حداکثر سختی پوشش استفاده شد. با استفاده از این مدل ریاضی علاوه بر این‌که امکان تعیین مؤثرترین متغیرها وجود دارد، می‌توان بهینه مقدار سختی را نیز به‌عنوان خروجی فرآیند به‌دست آورد. نتایج نشان داد که دما و مربع چرخه‌ی کاری مهم‌ترین متغیرهای تأثیر­گذار بر سختی این پوشش­ها هستند. همچنین پوششی با سختی Hv 491 در شرایط کاری دمای oC 13/3 ، زمان min 50/29 ، چرخه کاری 16/ 65 درصد، فرکانس Hz 94/146، جریان حداکثر A/dm2 09/4 و حداقل A/dm2 23/1 ایجاد شد.

کلیدواژه‌ها

عنوان مقاله [English]

Design Experiment Methods for Optimization of Aluminum Anodize Coating Hardness

نویسندگان [English]

  • Iman Mohammadi 1
  • Mazdak Izadi 2
  • Mohammad Farooghi 1
  • Abdollah Afshar 1

1 Sharif University of Technology, Department of Materials Science and Engineering, Tehran

2 Tariat Modares University, Faculty of Engineering, Tehran, Iran

چکیده [English]

The aim of this work is to optimize the hardness of anodizing aluminum coating by design of experimental method. Various parameters affect the hardness of these coatings among which time, temperature and pulse current parameters (current density limit, frequency and duty cycle) were considered. According to this, mentioned parameters in different levels were considered as input variables. Also, the effect of parameters on the hardness of anodizing aluminum coating was obtained as a mathematical model. The final model was achieved by Analysis of variance which was used for attaining the best method to predict the maximum hardness of these coatings. The most effective variables and optimized hardness of anodizing aluminum coating were obtained by using the mathematical model. Experimental
results showed that temperature and quadratic behavior of duty cycle were the most important terms on the hardness of
these coatings. Furthermore, the maximum hardness of this coating was 491Hv, which was attained at the maximum
and minimum current densities of 4.09, 1.23 A/dm2 , frequency of 146.94 Hz, time of 29.50 min, duty cycle of 65.16%
and the bath temperature of 3.13o C.

کلیدواژه‌ها [English]

  • anodizing
  • pulse current
  • hardness
  • design of experimental
1. Iman Mohammadi*, Abdollah Afshar, Modification of nanostructured anodized aluminum coatings by pulse current mode, Surface and Coatings Technology, 278, 48-55, (2015).
2. Abdul Mutalib Md Jani, Dusan Losic, Nicolas H. Voelcker, “Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications”, Progress in Materials Science, vol.58, pp. 636–704, (2013).
3.  Iman Mohammadi*, Abdollah Afshar, Shahab Ahmadi, Al2O3/Si3N4 nanocomposite coating on aluminum alloy by the anodizing route: Fabrication, characterization, mechanical properties and electrochemical behavior, Ceramics International, 42(10), 12105–12114, (2016).
4. W. Bensalah, M. Feki, M. Wery, H.F. Ayedi “Thick and Dense Anodic Oxide Layers Formed  on  Aluminum  in  Sulphuric  Acid  Bath”  ,  Journal  of  Materials  Science  & Technology, Volume 26, Issue 2, pp.113-118, (2010).
5. Y.F. Kuang, Y. Xu, G.X. Li, “Research advances on the surface treatment of aluminum and its alloy”, Plat. Finish, vol. 22, pp. 16–21, (2000).
6. T. Aerts , Th. Dimogerontakis, I. De Graeve, J. Fransaer and H. Terryn, “Influence of  the  anodizing  temperature  on  the  porosity  and  the  mechanical  properties  of  the porous anodic oxide film”, Surface and Coatings Technology, vol.201, pp. 7310-7317, (2007).
7. Tim Aerts , Jean-Baptiste Jorcin , Iris De Graeve, Herman Terryn , “Comparison between the influence of applied electrode and electrolyte temperatures on porous anodizing of aluminium” , Electrochimica Acta , VOL.55 ,PP. 3957–3965 ,(2010).
8. W. Lee, “The Anodization of Aluminum for Nanotechnology Applications”, The Member Journal of TMS, Vol.62, no.6, pp. 57-63, (2010).
9. Woo Lee, Roland Scholz, and Ulrich Gosele, “A Continuous Process for Structurally Well-Defined Al2O3 Nanotubes Based on Pulse Anodization of Aluminum”, Nano Lett., Vol. 8, No. 8, pp. 2155-2160, (2008).
10. W. Lee, K. Schwirn, M. Steinhat, E. Pippel, R. Scholz, U. Gosele, “Structural Engineering of Nanoporous Anodic Aluminium Oxide by Pulse Anodization of Aluminium”, Nature Nanotechnology, Vol.3, pp. 234-239, (2008).
11 . عبدالهی، ی.، صبور روح اقدم، ع.،  کریم‌زاده ع. و یزدی زاد، آ. ،" مدل سازی تأثیر زمان و دانسیته جریان بر روی ضخامت و سختی لایه اکسیدی در آندایزینگ آلومینیوم با استفاده از روش­های آماری تجربی "ششمین همایش مشترک مهندسین متالوژی و انجمن علمی ریخته گری ایران ، دانشگاه صنعتی اصفهان ، (آبان 1390).
12. عادل خانی، ه. و فراتی راد، ح. ،"مطالعه مقاومت خوردگی آلومینیوم آندایز شده با جریان مستقیم و پالسی، سیزدهمین سمینار مهندسی سطح، دانشگاه تبریز،  )اردیبهشت 1391 (.
13. Iman Mohammadi*, Abdollah Afshar, Shahab Ahmadi, Nanoporous anodized aluminum thickness optimization through pulse current mode, Journal of Advanced Materials and Processing, 3(4), 11-24, (2015).
14. Iman Mohammadi*, Shahab Ahmadi, Abdollah Afshar, Effect of pulse current parameters on the mechanical and corrosion properties of anodized nanoporous aluminum coatings, Materials Chemistry and Physics, 183, 490–498, (2016).
15. H.C. Cheng, K.Y. Hsieh and K.M. Chen, Microelectron. Reliability, vol.51, pp. 826, (2011).
16. H.L. Man, S.K. Behera and H.S. Park, J. Environ. Sci.Technol, vol.7, pp.157, (2010).
17. W. Bensalah , K. Elleuch , M. Feki  , M. Wery , H.F. Ayedi , “Optimization of anodic layer properties on aluminium in mixed oxalic/sulphuric acid bath using statistical