نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشکده مهندسی مواد دانشگاه صنعتی اصفهان، اصفهان، ایران

2 دانشکده فیزیک، دانشگاه کاشان، کاشان، ایران

چکیده

امروزه فیلم‌های اکسید آلومینیوم آندی (AAO) ایجادشده به کمک آندایزینگ، دارای کاربردهای گسترده‌ای در حوزه‌های مختلفی از نانو می‌باشند. در این پژوهش به بررسی چگونگی ایجاد AAO به کمک آندایزینگ نرم و سخت آلیاژ آلومینیوم 1100 در سه شرایط متفاوت پرداخته شد و پارامترهای مشخصه فیلم‌های حاصل از این سه حالت مورد بررسی قرار گرفت. نتایج نشان داد که به کمک مخلوط اسید اگزالیک- اسید سولفوریک به‌عنوان الکترولیت آندایزینگ  می‌توان در ولتاژهای پایین‌تری نسبت به آندایزینگ در محلول اسید اگزالیک به فیلم‌های AAO مناسب دست ‌یافت. هم­چنین با استفاده از تصاویر میکروسکوپی الکترونی نشر میدانی مشخص شد، به‌کارگیری مخلوط اسید اگزالیک- اسید سولفوریک منجر به دست­یابی به فیلم‌هایی با فاصله بین­ حفره‌ای و قطر حفره‌ای کمتر بدون کاهش کیفیت فیلم اکسیدی می‌شود. ضخامت لایه سدی نیز به‌عنوان پارامتر مهم برای رشد مواد مختلف درون AAO از 155 نانومتر به حدود 110 نانومتر کاهش می‌یابد. بررسی فازهای موجود در AAO به کمک آنالیز پراش اشعه ایکس حاکی از ساختار آمورف-بلوری این فیلم‌ها داشت. نتایج آنالیز EDS نشان داد، این فیلم‌ها با اضافه شدن اسید سولفوریک به محلول آندایزینگ حاوی مقادیر گوگرد می‌شوند و با افزایش غلظت اسید سولفوریک به ­کار رفته مقدار گوگرد بیشتر خواهد شد. این موضوع نشان‌دهنده قدرت اسیدی بالای اسید سولفوریک و نفوذ این عنصر به فیلم در حین فرایند آندایزینگ می‌باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Investigation the Mild and Hard Anodizing of 1100 Aluminium Alloy in Different Acidic Electrolyte, and Characterization of Obtained Oxide Film

نویسندگان [English]

  • Masood Soltani 1
  • ali shafyei 2
  • Saeed Akhavan 1
  • Mohammad Noormohammadi 2

1 Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran.

2 Department of Physics, Kashan University, Kashan, Iran

چکیده [English]

Nowdays, AAO (Anodic Aluminium Oxide) films obtained by anodizing, have vast  applications in different fields of nano. In this study, AAO films production by mild and hard anodizing of 1100 aluminium alloy was investigated in three different conditions, and the characteristic parameters of these films were studied. Results showed that AAO films produced in oxalic acid and sulfuric acid mixture as an anodizing electrolyte needs to lower voltage compared with films produced in oxalic acid electrolyte alone. Mixture of oxalic acid and sulfuric acid generated AAO films with smaller interpore distance and pore diamaeter without any reduction in oxide film quality. Thickness of the barrier layer which is an important parameter for the growth of materials, was also reduced from 155 nm to about 110 nm. Phase analysis results using XRD patterns showed amorphous-crystalline structure of AAO films. EDS results showed the presence of sulfur in these films with addition of sulfuric acid to the anodizing electrolyte, and the more sulfuric acid was added to the solution, the amount of sulfur was increased. This shows high acidic potential of sulfuric acid and its peneteration into the film during anodizing process.

کلیدواژه‌ها [English]

  • Anodizing
  • Electrolyte
  • Barrier layer
  • Sulfuric acid
  • Interpore distance
.   Jani, A.  M. M.,  Losic, D., & Voelcker,  N.  H.,   Nanoporous anodic aluminium oxide: advances in surface engineering and emerging applications, Progress in Materials Science, 2013, 58(5), 636-704.
2.   Valtchev, V., Mintova, S., & Tsapatsis, M., Ordered porous solids: recent advances and prospects, Elsevier, 2011.
3.     Lee, W., & Park, S. J., Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures, Chemical reviews, 2014, 114(15), 7487-7556.
4.     Voon, C. H., Derman, M. N., Hashim, U., Ahmad, K. R., & Foo, K. L., Effect of temperature of oxalic acid on the fabrication of porous anodic alumina from Al-Mn alloys, Journal of Nanomaterials, 2013, 40, 40-46.
5.  Naief, T.M., Rashid, K.H., Comparative Study for Anodizing Aluminum Alloy 1060 by Different Types of Electrolytes Solutions", First Scientific Conference on Modern Technologies in Oil & Gas Refining, 2011, 1, 10-16.
6.      Friedman, A. L., Brittain, D., & Menon, L. (2007). Roles of p H and acid type in the anodic growth of porous alumina. The Journal of chemical physics, 2007, 127(15), 154717.
7.      Chu, S. Z., Wada, K., Inoue, S., Isogai, M., & Yasumori, A., Fabrication of Ideally Ordered Nanoporous Alumina Films and Integrated Alumina Nanotubule Arrays by High‐Field Anodization, Advanced materials, 2005, 17(17), 2115-2119.
8.    Lee,  W. ,  Ji, R.,  Gösele, U.,  &  Nielsch, K.,  Fast  fabrication   of long-range ordered porous alumina membranes by hard anodization, Nature materials, 2006, 5(9), 741-747.
9.     Nielsch, K., Choi, J., Schwirn, K., Wehrspohn, R. B., & Gösele, U., Self-ordering regimes of porous alumina: the 10 porosity rule, Nano letters, 2002, 2(7), 677-680.
10.   Ono, S., Saito, M., & Asoh, H., Self-ordering of anodic porous alumina induced by local current concentration: Burning,  Electrochemical and solid-state letters, 2004, 7(7), B21-B24.
11.  Konieczny,   J., Dobrzański, L. A., Labisz, K., & Duszczyk, J., The influence of cast method and anodizing parameters on structure and layer thickness of aluminium alloys, Journal of Materials Processing Technology, 2004, 157, 718-723.
12.  Wielage, B., Alisch, G., Lampke, T., & Nickel, D., Anodizing–a key for surface treatment of aluminium, In Key Engineering Materials, 2008, 384, 263-281.
13.   O'sullivan, J. P., & Wood, G. C., The morphology and mechanism of formation of porous anodic films on aluminium, In Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences , 1970, 317, 511-543.
14.  Sulka, G. D., Stroobants, S., Moshchalkov, V., Borghs, G., & Celis, J. P., Synthesis of well-ordered nanopores by anodizing aluminum foils in sulfuric acid, Journal of the Electrochemical Society, 2002, 149(7), D97-D103.
15.   Kashi, M. A., Ramazani, A., Ghaffari, M., & Isfahani, V. B., The effect of growth rate enhancement on the magnetic properties and microstructures of ac electrodeposited Co nanowires using non-symmetric reductive/oxidative voltage, Journal of Crystal Growth, 2009, 311(21), 4581-4586.
16. Noormohammadi, M., & Moradi, M., Structural engineering of nanoporous alumina by direct cooling the barrier layer during the aluminum hard anodization, Materials Chemistry and Physics, 2012, 135(2), 1089-1095.
17.  Schwirn, K., Lee, W., Hillebrand, R., Steinhart, M.,    Nielsch, K., & Gösele, U., Self-ordered anodic aluminum oxide formed by H2SO4 hard anodization, Acs Nano, 2008, 2(2), 302-310.
18.   Lee, W., Kim, J. C., & Gösele, U., Spontaneous current oscillations during hard anodization of aluminum under potentiostatic conditions, Advanced Functional Materials, 2010, 20(1), 21-27.
19.  Jamaati, R., Toroghinejad, M. R., & Najafizadeh, A., Application of anodizing and CAR processes for manufacturing Al/Al2O3 composite, Materials Science and Engineering: A, 2010, 527(16), 3857-3863.
20.   Sulka, G. D., & Parkoła, K. G., Temperature influence on well-ordered nanopore structures grown by anodization of aluminium in sulphuric acid, Electrochimica Acta, 2007, 52(5), 1880-1888.
21.  Ono, S., & Masuko, N., Evaluation of pore diameter of anodic porous films formed on aluminum, Surface and Coatings Technology, 2003, 169, 139-142.
22.   Moradi, M., Noormohammadi, M., & Behzadi, F., Three-dimensional structural engineering of nanoporous alumina by controlled sprinkling of an electrolyte on a porous anodic alumina (PAA) template, Journal of Physics D: Applied Physics, 2011, 44(4), 045301.
23. Noormohammadi, M., Fabrication of self-ordered nanoporous alumina with 69–115 nm Interpore distances in sulfuric/oxalic acid mixtures by hard anodization, Japanese Journal of Applied Physics, 2010, 49(1R), 015202.
24.  Kasalica, B., Belcˇa, I., Stojadinović, S., Sarvan, M., Perić, M., & Zeković, L., Nature of galvanoluminescence of oxide films formed by aluminum anodization in inorganic electrolytes, The Journal of Physical Chemistry C, 2007, 111(33), 12315-12319.
25.  Thompson, G. E., & Wood, G. C., Porous anodic film formation on aluminium, Nature, 1981, 290(5803), 230-232.
26.  Kashi, M. A.,  Ramazani, A.,  Noormohammadi, M.,  Zarei, M., & Marashi, P., Optimum self-ordered nanopore arrays with 130–270 nm interpore distances formed by hard anodization in sulfuric/oxalic acid mixtures, Journal of Physics D: Applied Physics, 2007, 40(22), 7032.
27.  Wei, W., Li, S., Liu, J., & Zhang, J., Size-controlled synthesis of highly ordered nanoporous AAO membranes, Nanoscience, 2006, 11(2), 157.
28.  Li, Y., Zheng, M., Ma, L., & Shen, W., Fabrication of highly ordered nanoporous alumina films by stable high-field anodization, Nanotechnology, 2006, 17(20), 5101.
29.  Lee, W., Nielsch, K., & Gösele, U., Self-ordering behavior of nanoporous anodic aluminum oxide (AAO) in malonic acid anodization, Nanotechnology, 2007, 18(47), 475713.
30.  Choudhary, R. K., Mishra, P., Kain, V., Singh, K., Kumar, S., & Chakravartty, J. K., Scratch behavior of aluminum anodized in oxalic acid: effect of anodizing potential. Surface and Coatings Technology, 2015, 283, 135-147.
31.  Bocchetta, P., Sunseri, C., Bottino, A., Capannelli, G., Chiavarotti, G., Piazza, S., & Di Quarto, F., Asymmetric alumina membranes electrochemically formed in oxalic acid solution, Journal of applied electrochemistry, 2002, 32(9), 977-985.
32.  Mason, R. B., Factors affecting the formation of anodic oxide coatings in sulfuric acid electrolytes, Journal of The Electrochemical Society, 1955, 102(12), 671-675.