نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشکده مهندسی معدن و متالورژی، دانشگاه صنعتی امیرکبیر، تهران، ایران

2 دانشکده مهندسی معدن و متالورژی، دانشگاه صنعتی امیرکبیر، تهران ٍ ایران

3 دانشکده مواد فلزی، دانشگاه صنعتی مالک اشتر، تهران، ایران

چکیده

در این پژوهش تولید پوشش نانوساختار Cr2O3-20YSZ-10SiC از طریق آسیاکاری جداگانه پودرهای اولیه اکسیدکروم، YSZ و کاربیدسیلیسیوم به مدت پنج ساعت در آسیاب با انرژی بالا، مخلوط پودرهای آسیاشده به ترتیب به نسبت‌های 70، 20 و 10 در­صد حجمی و در ادامه پاشش پودرهای آگلومره بر سطح زیرلایه فولادی ضدزنگ 304L انجام گرفت. پس از آن خواص مکانیکی پوشش‌های تولیدی شامل سختی، استحکام‌ چسبندگی و چقرمگی در مقایسه با پوشش نانوساختار اکسیدکروم خالص ارزیابی گردید. بر­اساس آنالیزهای اشعه ایکس از پودرهای آسیاشده و پوشش‌ها، هیچ فاز جدیدی در حین آسیاکاری پودرها و پاشش پلاسمایی ایجاد نگردید. تصاویر میکروسکوپ الکترونی روبشی از ریزساختار پوشش‌ها نشان دادند که پوشش‌های تولیدی دارای ساختار نانو هستند. بر­اساس آنالیز تصویری عکس های میکروسوپ نوری از سطح مقطع پوشش‌ها، با ایجاد کامپوزیت درصد تخلخل‌ها در پوشش تولیدی از 7/8 به 8/12 افزایش یافت. ارزیابی خواص مکانیکی پوشش‌ها نشان داد که پوشش‌های تولیدی دارای استحکام چسبندگی بالایی در محدود 40-49 مگاپاسکال بودند. هم­چنین با افزودن ذرات YSZ و SiC تا مقادیر به ترتیب 20 و 10 درصد حجمی به پوشش نانوساختار اکسیدکروم و ایجاد کامپوزیت، مقادیر میانگین سختی پوشش از 823 به 910 ویکرز و چقرمگی آن از MPam1/2  9/7 به MPam1/2 1/8 افزایش یافتند.

کلیدواژه‌ها

عنوان مقاله [English]

Improving Mechanical Properties of Nanostructured Cr2O3 Plasma Sprayed Coating through formation of Cr2O3-20YSZ-10SiC Nanocomposite Coatings

نویسندگان [English]

  • S. M Hashemi 1
  • N. Parvin 2
  • Z. Valefi 3

1 Department of Mining & Metallurgical Engineering, Amirkabir University of Technology, Tehran, Iran

2 Department of Mining & Metallurgical Engineering, Amirkabir University of Technology, Tehran, Iran

3 Department of Metallic Materials, Malek-Ashtar University of Technology, Tehran, Iran

چکیده [English]

Cr2O3, YSZ and SiC nano-powders were prepared by ball milling and subsequently mixed and agglomerated to reach the proper composition and size for spraying. Morphological investigations and particle size analysis showed that powder particles after 5h of milling time reached to an ultrafine/nano size. The powder mixtures were then deposited onto 304L steel substrates using Atmospheric Plasma Spray (APS) to deposit Cr2O3-20vol%YSZ-10vol%SiC composite coating. Microstructure and morphology of the elemental/milled powders and plasma sprayed coatings were characterized using Field Emission scanning electron microscopy (FESEM) equipped by EDS. X-ray diffraction (XRD) patterns of powder particles and coatings included only the elemental peaks without any traces of impurities and new appearance peaks. Using image analysis method, the coatings porosity content increased from 8.7 to 12.8 through formation of composite coating. Also mechanical properties of the coatings including bonding strength, micro hardness and fracture toughness were evaluated. The results showed that coatings have high bonding strength of 40-49 MPa. Regarding hardness and toughness results, adding reinforcements to Cr2O3 coating increased hardness and toughness to 910 HV and 8.1 MPam1/2, respectively.

کلیدواژه‌ها [English]

  • Nanocomposite
  • Cr2O3-YSZ-SiC
  • Ceramic
  • Ball Milling
  • Plasma Spray
  • Mechanical Properties
 
1.   A. Vardelle, C. Moreau, N.J. Themelis, "a Perspective on Plasma Spray Technology", Plasma Chemistry and Plasma Processing, 35 (2015), 491–509.
2.   V.C. and L.L. Giovanni Bolelli, "Wear behaviour of thermally sprayed ceramic oxide coatings", wear. 261 (2006) 1298–1315.
3.   G.E.K. and M. Brochu, "Anti-Abrasive Nanocoatings Current and future applications", chapter 19, Woodhead Publishing in Materials, 2015.
4.   E.F. Wank, B. Wielage and G. Reisel, T. Grund, "Performance of Thermal Spray Coating under Dry Abrasive Wear Conditions", 4th Int. Conf. Coatings. (2011).
5.   G.B. and P.F. A.Cellard, V. Garnier, G. Fantozzi, "Wear Resistance of Chromium Oxide Nanostructured Coatings", Ceram. Int. 35 (2009) 913–916.
6.   B.B. and K. Balani, "Advanced Structural Ceramics", 1st ed., Wiley-American Ceramic Society, 2011.
7.   B. and I. Manna, "Ceramic Nanocomposites", Woodhead Publishing, 2013.
8.   E.I. C. Suryanarayana, T. Klassen, "Synthesis of nanocomposites and amorphous alloys by mechanical alloying", Mater. Sci. 46 (2011) 6301–6315.
9.   R.B. and H.G. J. Karch, "Ceramics ductile at low temperature", Science 330 (1987) 556–558.
10. A. Vardelle, "the 2016 Plasma Roadmap: Low temperature plasma science and technology", Therm. Spray Technol. 25 (2016) 1376-1440.
11. A.K.S. and H.R. D. Ghosh, "Nano Structured Plasma Spray Coating for Wear and High Temperature Corrosion Resistance Applications", Inst. Eng. 95 (2014) 57–64.
12. P.D. and P. Chawla Vikas, Sidhu Buta Singh, S., "Performance of Plasma Sprayed Nanostructured and Conventional Coatings", F Aust. Ceram. Soc. 44 (2008) 56–62.
13. I. Adamovich, "the 2017 Plasma Roadmap: Low temperature plasma science and technology", Phys. D Appl. Phys. 50 (2017) 1–46.
14. E.H.J. and Y.H.S. M. Gell a, "Development and implementation of plasma sprayed nanostructured ceramic coatings", Surf. Coatings Technol. 146 (2001) 48–54.
15. S. and Toplan, "Tribological behavior of a plasma-sprayed Al2O3-TiO2-Cr2O3 coating", Mater. Tehnol. 47 (2013) 181–184.
16. M.S. and J. Iwaszko, "Laser Remelting Teratment of Plasma-Sprayed Cr2O3 Oxide Coatings", Arch. Metall. Mater. 57 (2012) 215–221.
17. J.H.O. and S. Sasaki, "Effects of Different Additives on Microstructure and High-temperature Tribological Properties of Plasma-sprayed Cr2O3 Ceramic Coatings", wear. 249 (2001) 56–66.
18. J.K. and Z.P. P. Ctibor, I. Pıs, "Microstructure and Properties of Plasma-Sprayed Mixture of Cr2O3 and TiO2", Therm. Spray Technol. 22 (2013) 1163–1169.
19. H.S.A. and K.A.K. Magdy M. El Rayes, "Review paper: Erosion - Corrosion of Cermet Coating", J. Electrochem. Sci. 8 (2013) 1117–1137.
20. Leon L.MishnaevskyJr., "Three-dimensional numerical testing of microstructures of particle reinforced composites", Acta Mater. 52 (2004) 4177–4188.
21. F.D. and I.S. Brian Cantor, "Metal and Ceramic Matrix Composites", 1st ed., CRC Press, 2003.
22. D.T. and F.N. L. Plazanet, "Effect of SiC and ZrO2 Particles on The Mechanical Properties of NiAl", Compos. Sci. Technol. 59 (1999) 537–542.
23. Y.H. and H.Z. Jia Lin, "Damage Resistance, R-curve Behavior and Toughening Mechanisms of ZrB2-based Composites with SiC Whiskers and ZrO2 Fibers", Ceram. Int. 41 (2015) 2690–2698.
24. Y. and H. Lei Chen, "Effect of SiC content on Mechanical Properties and Thermal Shock Resistance of BN–ZrO2–SiC Composites", Mater. Sci. Eng. 590 (2014) 346–351.
25. M.S.P. and H.P.R. N. Krishnamurthy, "A Study of Parameters Affecting Wear Resistance of Alumina and Yttria Stabilized Zirconia Composite Coatings on Al-6061 Substrate", Int. Sch. Res. Not. 2012 (2012) 13.
26. J.L. and C.M. J.O. Berghaus, "Mechanical and Thermal Transport Properties of Suspension Thermal-Sprayed Alumina-Zirconia Composite Coatings", Therm. Spray Technol. 17 (2008) 91–104.
27. N.P.P. and P.G.K. K. W. Schlichting, "Thermal Conductivity of Dense and Porous Yttria-Stabilized Zirconia", Mater. Sci. 36 (2001) 3003–3010.
28. H.M. Kandil, Elastic Behavior of Single Crystals of Ytrria-Stabilized Zirconia, PhD Thesis, Iowa State Universtity, 1983.
29. Y. Takano, T. Komeda and M. Yoshinaka, "Fabrication, Microstructure and Mechanical Properties of Cr2O3-ZrO2-2.5Y Composite Ceramics in the Cr2O3-Rich Region", J. Am. Ceram. Soc., 81 [9] 2497–500 (1998)
30. R.H.L. Garcia, V. Ussui, N.B. de Lima, "Physical properties of alumina yttria-stabilized zirconia composites with improved microstructure", J. Alloys and Compounds 486 (2009) 747–753.
31. G.A. Gogotsi, "Fracture Toughness of Ceramics and Ceramic Composites", Ceramics International 29 (2003) 777–784
32. M. Kutz, "Handbook of materials selection" page 424, 2002 John Wiley & Sons, Inc., NewYork
33. G.A. Gogotsi, "Fracture Toughness Studies on V-Notched Ceramic Specimens, Strength of Materials", Vol. 32, No. 1, 2000.
34. R.G. Munro, "Material Properties of a Sintered α-SiC", Phys. Chem. Ref. Data. 26 (2009) 1195.
35. P.M. Sousa , A.J. Silvestre, O. Conde, "Cr2O3 thin Films Grown at Room Temperature by Low Pressure Laser Chemical Vapour Deposition", Thin Solid Films 519 (2011) 3653–3657.
36. E.M. García, "Optimizing the Sintering of Cr2O3-Nano Powders for HVOF Applications", Carlos III de Madrid, 2012.
37. F. Shackelford, William Alexander, "CRC Materials Science and Engineering Handbook", page 1674, 2001 CRC Press LLC.
38. M. Faryna, L. Litynska, K. Haberko, "Particulate Composites of TZP-Chromium Oxide and TZP-Chromium Carbide; Microbeam Investigations", Microchim. Acta, 15, 83-86 (1998).
39. D.W. Richerson, "Modern Ceramic Engineering: Properties, Processing, and Use in Design", Third Edition, 3rd ed., CRC Press, 2012.
40. N.B. and K.S.R. S.T. Aruna, "Phase Transformation and Wear Studies of Plasma Sprayed Yttria Stabilized Zirconia Coatings Containing Various Mol% of Yttria", Mater. Charact. 62 (2011) 697–705.
41. H.L. AN Khan, J Lu, "Heat Treatment of Thermal Barrier Coatings", Mater. Sci. Eng. 359 (2003) 129–136.
42. R.N. Chan, "Fracture Properties of Yttria-Stabilized Zirconia (YSZ) Thin-Film Modified Constructs", ProQuest Dissertations, 2013.
43. A.J.G.L. and S.Y. O. Roberts, "A Study of Phase Transformation at The Surface of a Zirconia Ceramic", in: Proc. World Congr. Eng. 2014 Vol II, 2014.
44. N.Z. and M.A. Zaeem, "Competing Mechanisms between Dislocation and Phase Transformation in Plastic Deformation of Single Crystalline Yttria-Stabilized Tetragonal Zirconia Nanopillars", Acta Mater. 120 (2016) 337–347.
45. V.S. and W.S. G. Witz, "Phase Evolution in Yttria-Stabilized Zirconia Thermal Barrier Coatings Studied by Rietveld Refinement of X-Ray Powder Diffraction Patterns", Am. Ceram. Soc. 90 (2007) 2935–2940.
46. J.J. Swab, "Role of Oxide Additives in Stabilizing Zirconia for Coating Applications", PN Publisher, 2001.
47. R.F. Bunshah, "Handbook of Hard Coatings: Deposition Technolgies, Properties and Applications", 1st ed., William Andrew, 2000.
48. H. Ghayour, M. Abdellahi, M. Bahmanpour, "Optimization of the high Energy Ball-milling: Modeling and Parametric Study", Powder Technology 291 (2016) 7–13.
49.J.R. Davis, "Handbook of Thermal Spray Technology", ASM International, 2004.
50. H.S. and V.C. Manoj Kumar Singla, "Thermal Sprayed CNT Reinforced Nanocomposite Coatings – A Review", Miner. Mater. Charact. Eng. 10 (2011) 717–726.
51. S.S. and A.Z. V. Belashchenko, M. Dratwinski, "Thermal Spraying for Power Generation Components", 1st ed., Wiley-VCH Verlag GmbH, 2007.
52. A.W. Society, "Thermal Spraying; Practice Theory, and Application", American Welding Society, 1985.
53. C.P.B. and J. Vicenzi, "Protection against Erosive Wear using Thermal Sprayed Cermet: A Review", springer, 2011.
54. N.B.D. and S. Nayak, "Nanocoatings for Engine Application", Surf. Coatings Technol. 194 (2005) 58–67.
55. S.R. and M.J.H. K. Strecker, "Fracture Toughness Measurements of LPS-SiC: a comparison of the Indentation Technique and the SEVNB Method", Mater. Res. 8 (2005) 121–124.
56. A.M. and M.B. Aleksandra Nastic, "Instrumented and Vickers Indentation for the Characterization of Stiffness, Hardness and Toughness of Zirconia Toughened Al2O3 and SiC Armor", Mater. Sci. Technol. 31 (2015) 773–783.
57. G.E. Dieter, "Mechanical metallurgy", 2nd ed., McGraw-Hill Inc., 1976.
58. J.R. Hirsch, H. H. and Rairden, Flame Spray Oxidation and Corrosion Resistant Super Alloys, Patent US4101713, 1978.
59. R.S.L. and B.R. Marple, "Thermal Spray Coatings Engineered from Nanostructured Ceramic Agglomerated Powders for Structural, Thermal Barrier and Biomedical Applications: A Review", Therm. Spray Technol. 16 (2007) 40–63.
60. B.S. and B.H. Shujuan Dong, "Microstructure and Properties of Cr2O3 Coating Deposited by Plasma Spraying and Dry-ice Blasting", Surf. Coatings Technol. 225 (2013) 58–65.
61. V.D. and Zhang, J., "Evaluation of Thickness, Porosity and Pore Shape of Plasma Sprayed TBC by Electrochemical Impedance Spectroscopy, Surf. Coatings Technol. 190 (2005) 98–109.
62. A.S. and R.J. Vinay Pratap Singh, "Wear of Plasma Sprayed Conventional and Nanostructured Al2O3 and Cr2O3, Based Coatings", Trans. Indian Inst. Met. 65 (2012) 1–12.
63. J.L. and J.W. D.L. Zhang, "Processing Ti3Al–SiC Nanocomposites using High Energy Mechanical Milling", Mater. Sci. Eng. 375–377 (2004) 911–916.
64. Michael Buchmann and Rainer Gadow, "Thermally Sprayed Coatings for Engine Applications", 2012.