نویسندگان

1 پژوهشگاه مواد و انرژی، پژوهشکده نانوتکنولوژی و مواد پیشرفته، گروه بیومواد، کرج، ایران

2 پژوهشگاه مواد و انرژی، پژوهشکده انرژی، گروه محیط زیست و انرژی، کرج، ایران

3 دانشگاه کاشان، دانشکده شیمی، گروه شیمی تجزیه، کاشان، ایران

چکیده

این‌کار مربوط به بهینه‌سازی ساختارهای متخلخل بر پایه نانوکامپوزیت پلی‌پروپیلن فومارات/هیدروکسی اتیل متاکریلات/ نانوذرات شیشه زیست‌فعال است که با واکنش کاهش- اکسایش (پلیمریزاسیون رادیکال آزاد) در دمای اتاق شبکه‌ای شده‌اند. این ساختارها با غوطه‌وری نانوکامپوزیت‌های تهیه‌شده به مدت چهار هفته در محلول مشابه مایعات بدن ایجاد می‌شوند و بر‌اساس استحکام مکانیکی (استحکام فشاری) و مورفولوژی سطح (تصاویر میکروسکوپ الکترونی روبشی) بهینه‌سازی می-شوند. در این بهینه‌سازی اثرات نسبت پلی‌پروپیلن فومارات/ هیما، میزان نانوذرات شیشه زیست‌فعال و درصد عامل جفت آغازگر بنزوئیل پروکساید و ان و ان دی‌متیل آنیلین، در ایجاد ساختارهای متخلخل و تغییرات استحکام مکانیکی، مشخص شد. درنهایت، بهترین فرمولاسیون نانوکامپوزیتی براساس عوامل مذکور نمونه‌ای که حاوی نسبت پلی‌پروپیلن فومارات/ هیما معادل 30/70، نانوذرات شیشه زیست‌فعال به میزان 20% وزنی و جفت آغازگر معادل 5/1% وزنی بود (SPHB.732/1.5)، به‌عنوان ساختار بهینه معرفی شد. این ساختار دارای مدول الاستیکی معادل MPa 7/57، حفراتی به‌هم‌پیوسته و به‌طور کامل باز به ابعاد حدود µm 200-100 و دارای سطحی پوشیده شده با میکروذرات هیدروکسی‌کربنات آپاتیت بود. ساختار SPHB.732/1.5 تهیه‌شده به روش غوطه‌وری در مایع شبیه‌سازی شده بدن، علاوه بر زیست‌فعال بودن، زیست‌تخریب‌پذیر است و بنابراین می‌تواند به‌عنوان داربست سلول‌های استخوانی مورد ارزیابی‌های بیشتر مانند مطالعات سلولی قرار گیرد.

کلیدواژه‌ها

عنوان مقاله [English]

Optimization of Porous Structures Based on Polypropylene Fumarate /Hydroxy Ethyl Metacrylate/ Bioactive Glass Prepared by Biomimetic Methods with Mechanical Strength and Surface Morphology Analyses

نویسندگان [English]

  • Sara Shahbazi 1
  • Ali Zamanyan 1
  • Mohammad Pazouki 2
  • Yaser Jafari 3

1 Material and Energy research Center, Department of Nanotechnology and Advanced Material, Karaj, Iran

2 Material and Energy research Center, Department of Energy, Karaj, Iran

3 University of Kashan, Department of Analytical Chemistry, Kashan, Iran

چکیده [English]

This work is related to optimize the porous structure nanocomposites based on polypropylene fumarate/ hydroxyethyl methacrylate/ bioactive glass nanoparticles (PPF/HEMA/NBG) which are cross-linked through the Reduction-Oxidation reaction (free radical polymerization) at the room temperature. The porous structures prepared by immersion of the nanocomposites in simulated body fluid (SBF) for 4 weeks. The samples were optimized based on the PPF/HEMA ratio, the NBG content and percentage of the benzoyl peroxide and dimethyl aniline pairs (BPO+DMA) with mechanical strength (compressive strength) and surface morphology (SEM images) analyses. Finally, the best structure based on mentioned factors, SPHB.732/1.5, which contains the PPF/HEMA ratio at 30/70, NBG content at 20 wt% and BPO+DMA pairs at 1.5 wt% was introduced as the optimum structure. This structure has an elastic modulus of 57.7 Mpa, interconnected-open porous architecture with the pore size approximately 100-200μm and the surface coated with hydroxycarbonate apatite microparticles (HCA). The SPHB.732/1.5 structure prepared by soaking in SBF not only is a bioactive component but also is a biodegradable material and hence can be used as a bone scaffold when more evaluate for this application.

کلیدواژه‌ها [English]

  • optimization
  • Bone scaffold
  • Biomimetic
  • Surface morphology
  • Mechanical Strength
1. Yao,  H.,  Tsai,  H.M.,  Chen,  Y.S.  and  Liu,  B.S., Fabrication   and   evaluation   of   a   new   composite composed of tricalcium phosphate, gelatin, and Chinese medicine  as  a  bone  substitute, Journal  of Biomedical Materials  Research  Part  B:  Applied Biomaterials,  75 (2005) 277-288.
2. Jones, R., Review of bioactive glass: from Hench to hybrids, Acta biomaterialia, 9 (2013) 4457-4486.
3. Boccaccini, A.R., Erol, M., Stark, W.J., Mohn, , Hong, Z.       and     Mano,     J.F.,     Polymer/bioactive     glass nanocomposites for biomedical applications: a review, Composites Science and  Technology, 70 (2010) 1764- 1776.
4. Shin, , Jo, S. and Mikos, A.G., Biomimetic materials for  tissue  engineering,  Biomaterials,  24  (2003)  4353- 4364.
5. Rezwan, , Chen, Q., Blaker, J. and Boccaccini, A.R., Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering, Biomaterials, 24 (2003) 4353-4364.
6. Kokubo, T., Kim, -M. and Kawashita, M., Novel bioactive materials with different mechanical properties, Biomaterials, 24 (2003) 2161-2175.
7. Jarcho, M., Calcium phosphate ceramics as hard tissue prosthetics, Clinical orthopaedics and related research,
157 (1981) 259-278.
8. Le Geros, Z., Calcium phosphate-based osteoinductive materials, Chemical reviews, 108 (2008) 4742-4753.
9. Loher, , Reboul, V., Brunner, T.J., Simonet, M., Dora, C.,  Neuenschwander,  P.  and  Stark,  W.J.,  Improved degradation   and   bioactivity   of   amorphous   aerosol derived   tricalcium   phosphate   nanoparticles   in   poly (lactide-co-glycolide), Nanotechnology, 17 (2006) 2054.
10. Misra, K., Mohn, D., Brunner, T.J., Stark, W.J., Philip, S.E., Roy, I., Salih, V., Knowles, J.C. and Boccaccini, A.R., Comparison of nanoscale and microscale bioactive glass on the properties of P (3HB)/Bioglass composites, Biomaterials, 29 (2008) 1750-1761.
 11. Schneider, O.D., Loher, S., Brunner, T.J., Uebersax, L., Simonet, M., Grass, R.N., Merkle, H.P. and Stark, W.J., Cotton wool-like nanocomposite biomaterials prepared by electrospinning: In vitro bioactivity and osteogenic differentiation of human mesenchymal stem cells, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 84 (2008) 350-362.

12. Khera, R.A. and Iqbal, M., Nanoscale bioactive glasses and their composites with biocompatible polymers,
Chemistry International, 1 (2015) 17-34.

13. Foppiano, S. Marshall, S.J. Marshall, G.W., Saiz, E. and Tomsia, A.P., Bioactive glass coatings affect the behavior of osteoblast-like cells,
Acta biomaterialia, 3 (2007) 765-771.

14. Shi, X. and Mikos, A.G., Poly (propylene fumarate), CRC Press: Boca Raton, FL, (2006). 15. Mikos, A.G., Payne, R.G. and Yaszemski, M.J., Poly (propylene fumarate), Google Patents, (1998).

16. Shao, F., Yang, Q., Li, L. and Lu, D., Self-cross-linking kinetics of unsaturated polyester poly (fumaric-coitaconic-co-butanediol),
Journal of Elastomers and Plastics, 47 (2015) 293-305.

17. Liu, X., Miller II, A.L., Waletzki, B.E., Yaszemski, M.J. and Lu, L., Novel biodegradable poly (propylene fumarate)-co-poly (L-lactic acid) porous scaffolds fabricated by phase separation for tissue engineering applications,
RSC advances, 5 (2015) 21301-21309.

18. Mistry, A.S., Pham, Q.P., Schouten, C., Yeh, T., Christenson, E.M., Mikos, A.G. and Jansen, J.A., In vivo bone biocompatibility and degradation of porous fumarate-based polymer/alumoxane nanocomposites for bone tissue engineering,
Journal of Biomedical Materials Research Part A, 92 (2010) 451-462.

19. Cai, Z.-Y., Yang, D.-A., Zhang, N., Ji, C.-G., Zhu, L. and Zhang, T., Poly (propylene fumarate)/(calcium sulphate/β-tricalcium phosphate) composites: Preparation, characterization and in vitro degradation,
Acta biomaterialia, 5 (2009) 628-635.

20. Peter, S.J., Miller, M.J., Yaszemski, M.J. and Mikos, A.G., POLYPROPYLENE FUMARATE),
Handbook of biodegradable polymers, 7 (1998), 87. 21. Henslee, A.M., Yoon, D.M., Lu, B.Y., Yu, J., Arango, A.A., Marruffo, L.P., Seng, L., Anver, T.D., Ather, H. and Nair, M.B., haracterization of an injectable, degradable polymer for mechanical stabilization of mandibular fractures, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 103 (2015) 529- 538.

22. He, S., Timmer, M., Yaszemski, M., Yasko, A., Engel, P. and Mikos, A., ynthesis of biodegradable poly
(propylene fumarate) networks with poly (propylene fumarate)–diacrylate macromers as crosslinking agents
and characterization of their degradation products,
Polymer, 42 (2001) 1251-1260.

23. Lan, P.X., Lee, J.W., Seol, Y.-J. and Cho, D.-W., Development of 3D PPF/DEF scaffolds using microstereolithography and surface modification,
Journal of Materials Science: Materials in Medicine, 20 (2009) 271-279.

24. Hasirci, V., Litman, A., Trantolo, D., Gresser, J. and Wise, D., Margolis, H., PLGA bone plates reinforced with crosslinked PPF,
Journal of Materials Science: Materials in Medicine, 13 (2002) 159-167.

25. Xifeng, Liu., A. Lee, Miller. II., Brian. E, Waletzki., Yaszemski, Michael. j. and Lichun, Lu., Novel biodegradable poly (propylene fumarate)-co-poly (L
  lactic acid) porous scaffolds fabricated by phase separation for tissue engineering applications, RSC Advances, 27 (2015) 21301-21309.

26. Shahbazi, S., Jafari, Y. Moztarzadeh, F. and M.M. Sadeghi, G., Evaluation of effective parameters for the synthesis of poly (propylene fumarate) by response surface methodology,
Journal of Applied Polymer Science, 131 (2014) 1-8.

27. Shahbazi, S., Moztarzadeh, F., M.M. Sadeghi, G. and Jafari, Y., In vitro study of a new biodegradable nanocomposite based on poly propylene fumarate as bone glue,
Materials Science and Engineering: C, 69 (2016) 1201-1209.

28. Shahbazi, S., Jafari, Y. Moztarzadeh, F. and M.M.Sadeghi, G., Two novel methods for synthesizing poly (propylene fumarate): Technical aspects and role of vacuum and N2 purging effects,
Polyolefins Journal, 4 (2016) 27-41.

29. Mozafari, M., Salahinejad, E., Shabafrooz, V., Yazdimamaghani, M., Vashaee, D. and Tayebi, L., Multilayer bioactive glass/zirconium titanate thin films in bone tissue engineering and regenerative dentistry,
International Journal of Nanomedicine, 8 (2013) 1665- 1672.

30. Kokubo, T., Apatite formation on surfaces of ceramics, metals and polymers in body environment,
Acta Materialia, 46 (1998) 2519-2527.

31. Xia, W. and Chang, J., Apatite formation on surfaces of ceramics, metals and polymers in body environment,
Materials letters, 61 (2007) 3251-3253.

32. Elliott, J., Structure, crystal chemistry and density of enamel apatites, Ciba Foundation Symposium 205- Dental Enamel, Wiley Online Library, (1997) 54-72.

33. Gao, C., Liu, T., Shuai, C. and Peng, S., Enhancement mechanisms of graphene in nano-58S bioactive glass
scaffold: mechanical and biological performance, Scientific reports, 4 (2014).
34. Townsend, P., Raux, P., Rose, R., Miegel, R. and Radin, E., The distribution and anisotropy of the stiffness of cancellous bone in the human patella, Journal of biomechanics, 8 (1975) 363-364 IN3 365-367.
35. Gibson, L.J., The mechanical behaviour of cancellous bone, Journal of biomechanics, 18 (1985) 317-328.
36. O'mahony, A.M., Williams, J.L. and Spencer, P., Anisotropic elasticity of cortical and cancellous bone in the posterior mandible increases periimplant stress and strain under oblique loading, Clinical Oral Implants Research, 12 (2001) 648- 57. 
37. Kabiri, K., Omidian, H., Hashemi, S. and ZohuriaanMehr, M., Synthesis of fast-swelling superabsorbent hydrogels: effect of crosslinker type and concentration on porosity and absorption rate, European Polymer Journal, 39 (2003) 1341-1348.
38. Gorna, K. and Gogolewski, S., Invitro degradation and calcification of materials from poly (ϵ-caprolactone)– poly (ethylene oxide) diols and various chain extenders, Journal of biomedical materials research, 60 (2002) 592-606.
39. Pishbin, F., Mouriño, V., Flor, S., Kreppel, S., Salih, V., Ryan, M.P. and Boccaccini, A.R., Electrophoretic deposition of gentamicin-loaded bioactive glass/chitosan composite coatings for orthopaedic implants, ACS applied materials & interfaces, 6 (2014) 8796-8806.
40. Lu, H.H., El-Amin, S.F., Scott, K.D. and Laurencin, C.T., Three-dimensional, bioactive, biodegradable, polymer–bioactive glass com  improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro, Journal of Biomedical Materials Research Part A, 64 (2003) 465-474.
41. Lei, B., Shin, K.-H., Noh, D.-Y., Jo, I.-H., Koh, Y.-H., Kim, H.-E. and Kim, S.E., Sol–gel derived nanoscale bioactive glass (NBG) particles reinforced poly (ε- caprolactone) composites for bone tissue engineering, Materials Science and Engineering: C, 33 (2013) 1102- 1108.
42. Zou, H., Wu, S. and Shen, J., Polymer/silica nanocomposites: preparation, characterization, properties, and applications, 2008, Chemical Reviews, 108 (2008) 3893-3.957.
43. Yunos, D.M., Bretcanu, O. and Boccaccini, A.R., Polymer-bioceramic composites for tissue engineering scaffolds, Journal of Materials Science, 43 (2008) 4433.
44. Peter, S.J., Kim, P., Yasko, A.W., Yaszemski, M.J. and Mikos, A.G., Crosslinking characteristics of an injectable poly (propylene fumarate)/β-tricalcium phosphate paste and mechanical properties of the crosslinked composite for use as a biodegradable bone cement, MRS Online Proceedings Library Archive, 530 (1998). 
45. Peter, S.J., Lu, L., Kim, D.J. and Mikos, A.G., Marrow stromal osteoblast function on a poly (propylene fumarate)/β- tricalcium phosphate biodegradable orthopaedic composite, Biomaterials, 21 (2000) 1207- 1213.
46. Athanasiou, K.A., Zhu, C.-F., Lanctot, D., Agrawal, C. and Wang, X., Fundamentals of biomechanics in tissue engineering of bone, Tissue engineering, 6 (2000) 361- 381.
47. Murugan, R. and Ramakrishna, S., Development of nanocomposites for bone grafting, Composites Science and Technology, 65 (2005) 2385-2406.
48. Lei, B., Shin, K.H., Noh, D.Y., Koh, Y.H., Choi, W.Y. and Kim, H.E., Bioactive glass microspheres as reinforcement for  improving the mechanical properties and biological performance of poly (ε-caprolactone) polymer for bone tissue regeneration, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 100 (2012) 967-975.
49. Muster, T.H., Prestidge, C.A. and Hayes, R.A., Water adsorption kinetics and contact angles of silica particles, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 176 (2001) 226-253.
50. Kabiri, K. and Zohuriaan-Mehr, M.J., Superabsorbent hydrogels from concentrated solution terpolymerization,
Iranian Polymer Journal, 13 (2004) 423-430.
51. Kiatkamjornwong, S. and Phunchareon, P., Influence of reaction parameters on water absorption of neutralized
poly (acrylic acid-co-acrylamide) synthesized by inverse suspension polymerization,
Journal of applied polymer science, 72 (1999) 1349-1366.
52. Omidian, H., Hashemi, S., Sammes, P. and Meldrum, I., A model for the swelling of superabsorbent polymers, Polymer, 39 (1998) 6697-6704