نویسندگان

1 پژوهشگاه مواد و انرژی، پژوهشکده سرامیک، کرج، ایران.

2 پژوهشگاه مواد و انرژی، پژوهشکده نیمه هادیها، کرج، ایران.

3 پژوهشگاه مواد و انرژی، پژوهشکده نانو، کرج، ایران.

چکیده

در این تحقیق، رشد لایه‌های کربن شبه‌الماسی (DLC) با استفاده از روش رسوب‌دهی شیمیایی از فاز بخار به کمک پلاسما (PECVD) بر روی زیرلایه‌ی AISI 316L انجام شد. به‌منظور بهبود چسبندگی این پوشش برروی فولاد قبل از فرآیند پوشش‌دهی، از عملیات نیتروکربوراسیون پلاسمایی استفاده ‌شد. رفتار سلول استئوبلاست G292 بر فولاد فاقد پوشش، فولاد نیتروکربوره شده و فولاد پوشش‌ داده‌شده با DLC مقایسه ‌شد. نتایج حاصل از طیف‌سنجی رامان نشان داد که این پوشش از 39% پیوندهای الماسی یا sp3 برخوردار می‌باشد. نتایج حاصل از آزمون سمی‌بودن سلولی نمونه‌ها نشان داد که در فولاد L316 حدود 29 درصد از سلول-های استئوبلاست زنده مانده‌اند که دارای زیست‌سازگاری مناسبی نمی‌باشد. فرآیند نیتروکربوراسیون و پوشش‌دهی DLC به دلیل زیست‌سازگاری و پایداری شیمیایی آن به عنوان مانعی برای رهایش عناصر سمی در آلیاژ عمل کرده و زیست‌سازگاری این فولاد را تاحد زیادی بهبود می‌بخشد. بدین صورت که پس از فرآیند نیتروکربوراسیون و پوشش‌دهی DLC درصد زنده ماندن سلول‌های استئوبلاست به حدود 40 درصد و 71 درصد افزایش یافت.

کلیدواژه‌ها

عنوان مقاله [English]

G 292 Osteoblastic Cell Behavior on DLC Coated 316L Stainless Steel for Medical Implants

نویسندگان [English]

  • Mohammad Reza Derakhshandeh 1
  • Mohammad Javad Eshraghi 2
  • Seyed Mohammad Mehdi Hadavi 3
  • Masoud Mozafari 3
  • Masoumeh Javaheri 1

1 Materials and Energy Research Center, Department of ceramic, Karaj, Iran.

2 Materials and Energy Research Center, Department of semiconductors, Karaj, Iran.

3 Materials and Energy Research Center, Department of Nano and Advanced Materials, Karaj, Iran.

چکیده [English]

In this research diamond-like carbon (DLC) films were deposited on AISI316L stainless steel by plasma enhanced chemical vapor deposition (PECVD) method. In order to improve adhesion of the coating, plasma nitrocarbuizing method was performed on substrates before DLC deposition. Raman spectra of the coating showed that sp3 fraction of the film was 39%. Biological properties of the uncoated, plasma nitrocarburized and DLC coated samples were analyzed. MTT results showed that 316L stainless steel didn’t have appropriate biocompatibility and nitrocarburizing process and DLC deposition improved the biocompatibility of the samples due to preventing the release of toxic elements such as nickel. Cell viability of the uncoated, plasma nitrocarburized and DLC coated samples was about 29%, 40% and 71% respectively.

کلیدواژه‌ها [English]

  • Diamond-like carbon
  • coating
  • Biocompatibility
  • Plasma nitrocarburizing
  • Plasma enhanced chemical vapor deposition
  1. Walczak, F. Shahgaldi, and F. Heatley, “In vivo corrosion of 316L stainless-steel hip implants: Morphology and elemental compositions of corrosion products,” Biomaterials, vol. 19, no. 1–3, pp. 229–237, 1998.
  2. Sun and E. Haruman, “Effect of carbon addition on low-temperature plasma nitriding characteristics of austenitic stainless steel,” Vacuum, vol. 81, no. 1, pp. 114–119, 2006.
  3. Fossati, F. Borgioli, E. Galvanetto, and T. Bacci, “Glow-discharge nitriding of AISI 316L austenitic stainless steel: Influence of treatment time,” Surf. Coatings Technol., vol. 200, no. 11, pp. 3511–3517, 2006.
  4. Hauert, “A review of modified DLC coatings for biological applications,” Diam. Relat. Mater., vol. 12, no. 3–7, pp. 583–589, 2003.
  5. Hauert, G. Thorwarth, U. Müller, M. Stiefel, C. V. Falub, K. Thorwarth, and T. J. Joyce, “Analysis of the in-vivo failure of the adhesive interlayer for a DLC coated articulating metatarsophalangeal joint,” Diam. Relat. Mater., vol. 25, pp. 34–39, 2012.
  6. Wang, J. F. Su, and X. Nie, “Corrosion and tribological properties and impact fatigue behaviors of TiN- and DLC-coated stainless steels in a simulated body fluid environment,” Surf. Coatings Technol., vol. 205, no. 5, pp. 1599–1605, 2010.
  7. Bociaga, P. Komorowski, D. Batory, W. Szymanski, A. Olejnik, K. Jastrzebski, and W. Jakubowski, “Silver-doped nanocomposite carbon coatings (Ag-DLC) for biomedical applications - Physiochemical and biological evaluation,” Appl. Surf. Sci., vol. 355, pp. 388–397, 2015.
  8. -G. Kim, S.-H. Ahn, J.-G. Kim, S.J. Park, K.-R. Lee, Electrochemical behavior of diamond-like carbon films for biomedical applications, Thin Solid Films. 475 (2005) 291–297.
  9. A. Singha, A. Ghosh, A. Roy, And N. R. Ray, “Quantitative Analysis Of Hydrogenated Diamondlike Carbon Films By Visible Raman Spectroscopy”, J. Appl. Phys., Vol. 100, No. 4, P. 044910, 2006.
  10.  C. Donnet And  A Erdemir, “Tribology Of Diamond-Like Carbon Films”, J. Appl. Phys. 2008.
  11. Campos, S.D. De Souza, L.G. Martinez, M.O.- Dionysio, “Study of Expanded Austenite Formed in Plasma Nitrided AISI 316L Samples”, Material and Methods, Mater. Res. 17 (2014) 1302–1308
  12. N. Mingolo, A.P. Tschiptschin, C.E. Pinedo, “On the formation of expanded austenite during plasma nitriding of an AISI 316L austenitic stainless steel”, Surf. Coatings Technol. 201 (2006) 4215–4218.
  13. L. Wang, S. Ji, J. Sun, “Effect of nitriding time on the nitrided layer of AISI 304 austenitic stainless steel”, Surf. Coatings Technol. 200 (2006) 5067–5070.
  14. E. Totten, Steel heat treatment: metallurgy and technologies, CRC press, 2006.
  15. Marušić, H. Otmačić, D. Landek, F. Cajner, E. Stupnišek-Lisac, Modification of carbon steel surface by the Tenifer® process of nitrocarburizing and post-oxidation, Surf. Coatings Technol. 201 (2006) 3415–3421.
  16. Ferrari And J. Robertson, “Interpretation Of Raman Spectra Of Disordered And Amorphous Carbon”, Phys. Rev. B, Vol. 61, No. 20, Pp. 14095–14107, 2000.
  17. C. Ferrari And J. Robertson, “Raman Spectroscopy Of Amorphous, Nanostructured, Diamond-Like Carbon, And Nanodiamond”, Philos. Trans. A. Math. Phys. Eng. Sci., Vol. 362, No. 1824, Pp. 2477–2512, 2004.
  18. Ferrari And J. Robertson, “Resonant Raman Spectroscopy Of Disordered, Amorphous, And Diamondlike Carbon”, Phys. Rev. B, Vol. 64, No. 7, P. 440, 2001.
  19. J. Robertson, “Diamond-Like Amorphous Carbon”, Mater. Sci. Eng. R Reports, Vol. 37, No. 4–6, Pp. 129–281, 2002.
  20. “Biological evaluation of medical devices, Part 5: Tests for in vitro cytotoxicity,” Int. Stand. ISO, vol. 3 Ed, p. 42, 2009.
  21. Salahinejad, M. J. Hadianfard, D. D. Macdonald, S. Sharifi, M. Mozafari, K. J. Walker, A. Tahmasbi Rad, S. V. Madihally, D. Vashaee, and L. Tayebi, “Surface modification of stainless steel orthopedic implants by sol-gel ZrTiO4 and ZrTiO4-PMMA coatings,” J. Biomed. Nanotechnol., vol. 9, no. 8, pp. 1327–1335, 2013
  22. Cui, F.Z., Li, D.J.: ‘A review of investigations on biocompatibility of diamond-like carbon and carbon nitride films’Surf. Coatings Technol., 2000, 131, (1–3), pp. 481–487.
  23. Branzoi, I. V., Iordoc, M., Branzoi, F., Vasilescu-Mirea, R., Sbarcea, G.: ‘Influence of diamond-like carbon coating on the corrosion resistance of the NITINOL shape memory alloy’Surf. Interface Anal., 2010, 42, (6–7), pp. 502–509.