نویسندگان

1 پژوهشگاه مواد و انرژی، پژوهشکده فناوری نانو ومواد پیشرفته، کرج، ایران.

2 دانشگاه علم و صنعت ایران، گروه مهندسی مواد ، تهران، ایران.

3 دانشگاه صنعتی مالک اشتر تهران، گروه مهندسی شیمی، تهران، ایران.

چکیده

در این پژوهش، پودر کاتدی LiNi0.5Mn0.3Co0.2O2 به روش سنتز احتراقی محلول اسیدسیتریک/ نیترات تولید گردید. اثر نسبت سوخت به اکسید‌کننده (5/0، 75/0، 1 و 5/1)= F/O و هم‌چنین اثر تغییرات دمای کلسیناسیون (700 ، 800 ، 850 و900 درجه سانتی‌گراد) بر روی تغییرات ساختاری و عملکرد الکتروشیمیایی نمونه‌ها بررسی شد. تحولات ساختاری پودرهای سنتز شده توسط آنالیز حرارتی افتراقی (DTA )، آنالیز پراش اشعه ایکس (XRD )، طیف‌‏سنج نشری پلاسمای جفت شده القایی (OES-ICP) و میکروسکوپ الکترونی روبشی گسیل میدانی (FESEM ) مطالعه شد. علاوه براین، تاثیر دمای کلسیناسیون بر عملکرد الکتروشیمیایی نمونه‌ها توسط آزمون شارژ/ تخلیه و سیکل‌پذیری ارزیابی شد. نتایج نشان داد که بهترین عملکرد الکتروشیمیایی با ظرفیت تخلیه mAh/g 159 در جریان ثابت mA/cm2 1/0 و سیکل‌پذیری 95% بعد از 20 سیکل مربوط به نمونه کلسینه شده در دمای ℃ 850 و نسبت 1=F/O است. بهبود عملکرد الکتروشیمیایی در این نمونه با افزایش نظم کاتیونی لایه‌ها و هم‌چنین کاهش مسیر نفوذ یونی ذرات یکنواخت نانومتری قابل توجیه است.

کلیدواژه‌ها

عنوان مقاله [English]

Effect of Calcination Temperature and Fuel to Oxidant Ratio for Synthesis of Li Ni0.5Mn0.3Co0.2 Cathode Powder for Li-ion Battery Via Solution Combustion Method

نویسندگان [English]

  • Milad Ghorbanzadeh 1
  • Mohammad Mehdi Hadavi 1
  • Reza Riahifar 1
  • Masoud Mohammadi Rahvard 2
  • Ramin Badrnezhad 3

1 Materials and Energy Research Center, Karaj, Iran

2 Iran University of Science and Technology, Tehran, Iran.

3 Malek Ashtar University of Technology, Teheran, Iran.

چکیده [English]

 Single phase LiNi0.5Mn0.3Co0.2O2 compound were prepared via acid citric-nitrate combustion method. The
effect of F/O= (0.5, 0.75,1 and 1.5) and calcination temperature (700, 800, 850 and 900
Ԩ ) on the structural and
electrochemical properties were investigated. The structural evolution was assessed by thermo gravimetric
analysis/simultaneous differential thermal analysis (DTA), X-ray diffraction (XRD), inductively coupled plasma optical
emission spectrometry (
ICP-OES) and field emission scanning electron microscopy (FESEM) experiments. The
electrochemical performance was evaluated by analyzing the charge/discharge profiles and cycling stability. The results
show that the best electrochemical performance with 159 mAh/g discharge capacity in 0.1 mA/cm
2 current density and
95% cycling stability after 20 cycles for sample of calcination temperature of 850
Ԩ and F/O=1. The improved
electrochemical behavior is closely connected to the reduction of the cation mixing after metal substitution and
reduction of ion diffusion path for Nano particles size.
 

کلیدواژه‌ها [English]

  • Solution Combustion method
  • calcination temperature
  • F/O ratio
  • Li Ni0.5Mn0.3Co0.2 cathode powder
  1. Bentaleb, I. Saadoune, K. Maher, L. Saadi, K. Fujimoto, and S. Ito, “On the LiNi0.2Mn0.2Co0.6O2 positive electrode material,” J. Power Sources, vol. 195, pp. 1510–1515, 2010.
  2. Labrini, I. Saadoune, F. Scheiba, A. Almaggoussi, J. Elhaskouri, P. Amoros, H. Ehrenberg, and J. Brötz, “Magnetic and structural approach for understanding the electrochemical behavior of LiNi0.33Co0.33Mn0.33O2 positive electrode material,” Electrochim. Acta, vol. 111, pp. 567–574, 2013.
  3. Xu, D. Qian, Z. Wang, and Y. S. Meng, “Recent progress in cathode materials research for advanced lithium ion batteries,” Mater. Sci. Eng. R Reports, vol. 73, no. 5–6, pp. 51–65, 2012.
  4. M. D. J. D.Wilcox, “Characterization and Electrochemical Performance of Substituted LiNi0.4Co0.2-yAlyMn0.4O2 (0<y<0.2) Cathode Materials,” ECS Trans., vol. 11, no. 29, pp. 27–33, 2008.
  5. Conry, A. Mehta, J. Cabana, and M. Doeff, “Structural Underpinnings of the Enhanced Cycling Stability upon Al-Substitution in LiNi0.45Mn0.45Co0.1-yAlyO2 Positive Electrode Materials for Li-ion Batteries,” Chem. Mater., vol. 24, pp. 3307–3317, 2012.
  6. Ren, X. Li, and Z. Peng, “Electrochemical properties of Li[Ni1/3Mn1/3Al1/3−xCox]O2 as a cathode material for lithium ion battery,” Electrochim. Acta, vol. 56, no. 20, pp. 7088–7091, 2011.
  7. Wilcox, S. Patoux, and M. Doeff, “Structure and Electrochemistry of LiNi1/3Co1/3-yMyMn1/3O2 (M = Ti, Al, Fe) Positive Electrode Materials,” J. Electrochem. Soc., vol. 156, no. 3, pp. A192–A198, 2009.
  8. B. Samarasingha, A. Wijayasinghe, M. Behm, L. Dissanayake, and G. Lindbergh, “Development of cathode materials for lithium ion rechargeable batteries based on the system Li(Ni1/3Mn1/3Co(1/3-x)Mx)O2, (M=Mg, Fe, Al and x=0.00 to 0.33),” Solid State Ionics, vol. 268, pp. 226–230, 2014.
  9. -H. Z. Wei-Bo Hua, Zhuo Zheng, Xiao-Dong Guo, “Microstructure and Electrochemical Properties of Post Heat-Treated,” Int. J. Chem. Mol. Nucl. Mater. Metall. Eng., vol. 511, no. 2, pp. 1102–1105, 2016.
  10. Ahn, S. N. Lim, K.-N. Jung, S.-H. Yeon, K.-B. Kim, H. S. Song, and K.-H. Shin, “Combustion-synthesized LiNi0.6Mn0.2Co0.2O2 as cathode material for lithium ion batteries,” J. Alloys Compd., vol. 609, pp. 143–149, 2014.
  11. J. Noh, S. Youn, C. S. Yoon, and Y. K. Sun, “Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries,” J. Power Sources, vol. 233, pp. 121–130, 2013.
  12. Aurbach, O. Srur-Lavi, C. Ghanty, M. Dixit, O. Haik, M. Talianker, Y. Grinblat, N. Leifer, R. Lavi, D. T. Major, G. Goobes, E. Zinigrad, E. M. Erickson, M. Kosa, B. Markovsky, J. Lampert, A. Volkov, J.-Y. Shin, and A. Garsuch, “Studies of Aluminum-Doped LiNi0.5Co0.2Mn0.3O2: Electrochemical Behavior, Aging, Structural Transformations, and Thermal Characteristics,” J. Electrochem. Soc., vol. 162, no. 6, pp. A1014–A1027, 2015.
  13. Zhang, Z.-B. Wang, J. Lei, F.-F. Li, J. Wu, X.-G. Zhang, F.-D. Yu, and K. Ke, “Investigation on performance of Li(Ni0.5Co0.2Mn0.3)1−xTixO2 cathode materials for lithium-ion battery,” Ceram. Int., vol. 41, no. 7, pp. 9069–9077, 2015.
  14. Wu, F. Wang, L. Gao, M. Li, L. Xiao, L. Zhao, S. Hu, X. Wang, Z. Xu, and Q. Wu, “Effect of precursor and synthesis temperature on the structural and electrochemical properties of Li(Ni0.5Co0.2Mn0.3)O2,” Electrochim. Acta, vol. 75, pp. 393–398, 2012.
  15. D. Wilcox, E. E. Rodriguez, and M. M. Doeff, “The Impact of Aluminum and Iron Substitution on the Structure and Electrochemistry of Li(Ni0.4Co0.2-yMyMn0.4)O-2 Materials,” J. Electrochem. Soc., vol. 156, no. 12, pp. A1011–A1018, 2009.
  16. Rumble, T. E. Conry, M. Doeff, E. J. Cairns, J. E. Penner-Hahn, and A. Deb, “Structural and Electrochemical Investigation of Li(Ni[sub 0.4]Co[sub 0.15]Al[sub 0.05]Mn[sub 0.4])O[sub 2] Cathode Material,” J. Electrochem. Soc., vol. 157, no. 12, p. A1317, 2010.
  17. C. Kam, a. Mehta, J. T. Heron, and M. M. Doeff, “Electrochemical and Physical Properties of Ti-Substituted Layered Nickel Manganese Cobalt Oxide (NMC) Cathode Materials,” J. Electrochem. Soc., vol. 159, no. 8, pp. A1383–A1392, 2012.
  18. El Mofid, S. Ivanov, A. Konkin, and A. Bund, “A high performance layered transition metal oxide cathode material obtained by simultaneous aluminum and iron cationic substitution,” J. Power Sources, vol. 268, pp. 414–422, 2014.
  19. Yang, X. Wang, L. Hu, G. Zou, S. Su, Y. Bai, H. Shu, Q. Wei, B. Hu, L. Ge, D. Wang, and L. Liu, “Layered Li[Ni0.5Co0.2Mn0.3]O2-Li2MnO3 core-shell structured cathode material with excellent stability,” J. Power Sources, vol. 242, no. C, pp. 589–596, 2013.
  20. Leah A. Riley, Sky Van Atta, Andrew S. Cavanagh, Yanfa Yan, Steven M. George, Ping Liu, Anne C. Dillon, Se-Hee Lee, “Electrochemical effects of ALD surface modification on combustion synthesized LiNi1/3Mn1/3Co1/3O2 as a layered-cathode material,” J. Power Sources, vol. 196, no. 6, pp. 3317–3324, 2011.