نویسندگان

1 دانشگاه شهید مدنی آذربایجان، دانشکده فنی و مهندسی، گروه مهندسی متالورژی و مواد ، تبریز، ایران.

2 دانشگاه صنعتی سهند تبریز، دانشکده مهندسی متالورژی و مواد ، تبریز، ایران.

چکیده

پیچیدگی تغییر‌شکل پلاستیک حین جوشکاری همزن اصطکاکی سبب می‌شود که جهت‌گیری بافت‌ در نقاط مختلف جوش تغییر کند. بنابراین، باید بافت اولیه حاصل از آزمون پراش الکترونهای برگشتی در چارچوب تغییر‌شکل برشی مرجع قرار نگرفته و انتقال بافت اولیه به چارچوب بافت برشی مرجع ضروری می‌باشد. در این پژوهش، به بررسی بافت جوش همزن اصطکاکی برنج تک‌فازی پرداخته شد. نتایج نشان داد که A_1^* (111)[1 ̅1 ̅2]،A_2^* (111)[112 ̅ ]، C {001}⟨110⟩ و گاوس {011}⟨100⟩ اجزاء اصلی تشکیل‌دهنده بافت در ناحیه جوش هستند. اجزاء بافت برشی (A_1^*، A_2^* و C) نشان‌دهنده تبلور مجدد دینامیکی پیوسته به عنوان سازوکار غالب و حضور بافت گاوس تاییدکننده تبلور مجدد دینامیکی ناپیوسته به عنوان سازوکار محتمل دیگر در پیدایش ریزساختار نهایی تعیین شد. 

کلیدواژه‌ها

عنوان مقاله [English]

Texture Analyses of Friction Stir Welded Single-phase Brass Using Electron Back Scattered Diffraction

نویسندگان [English]

  • Akbar Heidarzadeh 1
  • Tohid Saeid 2

1 Azarbaijan Shahid Madani University, Department of Materials Engineering, Tabriz, Iran.

2 Sahand University of Technology, Department of Materials Engineering, Tabriz, Iran.

چکیده [English]

Complex plastic deformation during friction stir welding causes variation of texture in different locations of the joint. Therefore, the as-acquired texture data from electron backscattered diffraction analysis are not often in the shear deformation frame of reference. In this study, the texture components of the friction stir welded single phase brass was studied. The results showed that the texture of the joint contained A_1^* (111)[1 ̅1 ̅2], A_2^* (111)[112 ̅ ], C{001}⟨110⟩, and Goss{011}⟨100⟩ components. The existence of A_1^*, A_2^*, and C texture components revealed that the continuous dynamic recrystallization plays a dominant role in the microstructural evolution. In addition, the presence of Goss texture component showed that discontinues dynamic recrystallization may also participate in the new grain formation.

کلیدواژه‌ها [English]

  • Friction Stir Welding
  • Texture
  • Electron backscattered diffraction
  • Brass
  1. Ma, Z. Y., "Friction Stir Processing Technology: A Review", Metallurgical and Materials Transactions A, Vol. 39, pp. 642-658, 2008.
  2. Çam, G., "Friction stir welded structural materials: beyond Al-alloys", International Materials Reviews, Vol. 56, pp. 1-48, 2011.
  3. Mishra, R. S. and Ma, Z. Y., "Friction stir welding and processing", Materials Science and Engineering: R: Reports, Vol. 50, pp. 1-78, 2005.
  4. Emamikhah, A., Abbasi, A., Atefat, A. and Givi, M. K. B., "Effect of tool pin profile on friction stir butt welding of high-zinc brass (CuZn40)", The International Journal of Advanced Manufacturing Technology, Vol. 71, pp. 81-90, 2014.
  5. Emamikhah, A., Abbasi, A., Lirabi, I., Feghhi, A. and Atefat, A., "The Role of Tool Pin Profile and Temperature on Friction Stir Welding of High Zinc Brass", Advanced Materials Research, Vol. 685, pp. 264-268, 2013.
  6. Heidarzadeh, A., Jabbari, M. and Esmaily, M., "Prediction of grain size and mechanical properties in friction stir welded pure copper joints using a thermal model", The International Journal of Advanced Manufacturing Technology, Vol. 77, pp. 1819-1829, 2015.
  7. Heidarzadeh, A. and Saeid, T., "Prediction of mechanical properties in friction stir welds of pure copper", Materials & Design, Vol. 52, pp. 1077-1087, 2013.
  8. Heidarzadeh, A., Kazemi-Choobi, K., Hanifian, H. and Asadi, P. "3 - Microstructural evolution". In: M. K. B. Givi and P. Asadi, editors. Advances in Friction-Stir Welding and Processing. Woodhead Publishing; 2014. p. 65-140.
  9. Ambroziak, A., "Hydrogen damage in friction welded copper joints", Materials & Design, Vol. 31, pp. 3869-3874, 2010.
  10. Chen, H.-C., Bi, G., Nai, M. L. S. and Wei, J., "Enhanced welding efficiency in laser welding of highly reflective pure copper", Journal of Materials Processing Technology, Vol. 216, pp. 287-293, 2015.
  11. Farrokhi, H., Heidarzadeh, A. and Saeid, T., "Frictions stir welding of copper under different welding parameters and media", Science and Technology of Welding and Joining, Vol. 18, pp. 697-702, 2013.
  12. Khodaverdizadeh, H., Mahmoudi, A., Heidarzadeh, A. and Nazari, E., "Effect of friction stir welding (FSW) parameters on strain hardening behavior of pure copper joints", Materials & Design, Vol. 35, pp. 330-334, 2012.
  13. Leal, R. M., Sakharova, N., Vilaça, P., Rodrigues, D. M. and Loureiro, A., "Effect of shoulder cavity and welding parameters on friction stir welding of thin copper sheets", Science and Technology of Welding and Joining, Vol. 16, pp. 146-152, 2011.
  14. Mironov, S., Inagaki, K., Sato, Y. S. and Kokawa, H., "Microstructural evolution of pure copper during friction-stir welding", Philosophical Magazine, Vol. 95, pp. 367-381, 2015.
  15. Pashazadeh, H., Masoumi, A. and Teimournezhad, J., "Numerical modelling for the hardness evaluation of friction stir welded copper metals", Materials & Design, Vol. 49, pp. 913-921, 2013.
  16. Shen, J. J., Liu, H. J. and Cui, F., "Effect of welding speed on microstructure and mechanical properties of friction stir welded copper", Materials & Design, Vol. 31, pp. 3937-3942, 2010.
  17. Xu, N., Ueji, R., Morisada, Y. and Fujii, H., "Modification of mechanical properties of friction stir welded Cu joint by additional liquid CO2 cooling", Materials & Design, Vol. 56, pp. 20-25, 2014.
  18. Çam, G., Mistikoglu, S. and Pakdil, M., "Microstructural and Mechanical Characterization of Friction Stir Butt Joint Welded 63% Cu-37% Zn Brass Plate", Welding Journal, Vol. 88, pp. 225-232, 2009.
  19. Çam, G., Serindağ, H. T., Çakan, A., Mistikoglu, S. and Yavuz, H., "The effect of weld parameters on friction stir welding of brass plates", Materialwissenschaft und Werkstofftechnik, Vol. 39, pp. 394-399, 2008.
  20. Emami, S. and Saeid, T., "Effects of Welding and rotational speeds on the Microstructure and Hardness of Friction Stir Welded Single-Phase Brass", Acta Metallurgica Sinica (English Letters), Vol. 28, pp. 766-771, 2015.
  21. Xie, G. M., Ma, Z. Y. and Geng, L., "Effects of Friction Stir Welding Parameters on Microstructures and Mechanical Properties of Brass Joints", Materials Transactions, Vol. 49, pp. 1698-1701, 2008.
  22. Xu, N., Ueji, R. and Fujii, H., "Enhanced mechanical properties of 70/30 brass joint by rapid cooling friction stir welding", Materials Science and Engineering: A, Vol. 610, pp. 132-138, 2014.
  23. Liu, H. J., Shen, J. J., Huang, Y. X., Kuang, L. Y., Liu, C. and Li, C., "Effect of tool rotation rate on microstructure and mechanical properties of friction stir welded copper", Science and Technology of Welding and Joining, Vol. 14, pp. 577-583, 2009.
  24. Fonda, R. W., Knipling, K. E. and Rowenhorst, D. J., "EBSD Analysis of Friction Stir Weld Textures", JOM, Vol. 66, pp. 149-155, 2014.
  25. Saeid, T., Abdollah-zadeh, A., Shibayanagi, T., Ikeuchi, K. and Assadi, H., "On the formation of grain structure during friction stir welding of duplex stainless steel", Materials Science and Engineering: A, Vol. 527, pp. 6484-6488, 2010.
  26. Humphreys, F. J. and Hatherly, M. "Chapter 13 - Hot Deformation and Dynamic Restoration". In: F. J. H. Hatherly, editor. Recrystallization and Related Annealing Phenomena (Second Edition). Oxford: Elsevier; 2004. p. 415-V.
  27. McNelley, T. R., Swaminathan, S. and Su, J. Q., "Recrystallization mechanisms during friction stir welding/processing of aluminum alloys", Scripta Materialia, Vol. 58, pp. 349-354, 2008.