نویسندگان

پژوهشگاه مواد و انرژی، پژوهشکده سرامیک، کرج، ایران.

چکیده

خانواده کانی‌های رسی میکا از جمله کانی‌های نسبتاً فراوان در معادن ایران به‌خصوص معادن سنگ آهن می‌باشد که معمولاً به‌صورت باطله در کنار هماتیت یافت می-شوند. کاربردهای متعددی هم در حوزه صنایع سنتی و هم در حوزه صنایع پیشرفته برای آن یافت شده است که بستگی به خواص شیمیایی، فیزیکی و حرارتی آن دارد. بنابراین مرور نسبتاً کاملی از کاربردهای میکا در این پژوهش صورت گرفته است. با توجه به حجم بالای باطله‌های معادن گل‌گوهر سیرجان، شناسایی و تعیین کاربرد آنها به جهت مصرفشان در صنایع دیگر به دو جهت حائز اهمیت است یکی جاگیر بودن این مواد و ایجاد مشکلات زیست‌محیطی و دیگری ایجاد ارزش افزوده برای آنها. در این کار پژوهشی یکی از باطله‌های این معدن با روش‌های میکروسکوپی،XRF ، XRD و STA مورد شناسایی کامل قرار گرفت و خواص مهندسی آن نیز بررسی گردید. با توجه به مرور کاربردهای میکا و ویژگی‌های بررسی شده پتانسیل کاربردها برای باطله مشخص شد.

کلیدواژه‌ها

عنوان مقاله [English]

New Applications of Mica Clay Minerals and Characterization Determination of GolGohar Iron Ore Mine Tailings Phlogopite

نویسندگان [English]

  • Hussein Nuranian
  • Abbas Keshavarz
  • Mohammad Ali kabiri

Materials and Energy Research Center, Department of Ceramic, Karaj, Iran.

چکیده [English]

Mica clay minerals group are relatively abundant of minerals in Iran, especially iron Ore. There areusually found as the tailings on the side ofhematite. Numerous applications in the area of traditional industries and the high-tech area for it has been found that, depending on the chemical, physical, and thermal properties of it. Socomplete overview of mica used in this research has been done.
Due to the high volume of tailings Sirjan Gol Gohar mines, Identify and determine their applicability for use in other industries is important for two reasons.First, they are widespread and cause environmental problems and second create added value for them. n this research, one of the mine tailings with microscopic techniques, XRF, XRD and STA was fully recognized and examined its engineering properties.According to the review of applications and propertiesmica are investigated, Potential uses for tailings found.

کلیدواژه‌ها [English]

  • Mineral
  • MICA
  • Phlogopite
  • Biotite
  • Characterization
  • applications determination
  • Tailings
  1. lefond, S.J., Industrial minerals and rocks, Society of mining engineers, 1983.
  2. Deer, W., Howie, R.A., Zussman, J., An Introduction to the Rock Forming Minerals, Mineralogical Society, 2013.
  3. Kisor, K., Uses of Industrial Minerals, Rocks and Freshwater, 2009.
  4. FaeghiNia, A., Ebadzadeh, T., Fabrication of machinable phlogopite- glass composite using microwave processing, Ceramics International, 2012, 38, 2653–2658.
  5. Obut, A., Girgin, I., Hydrogen peroxide exfoliation of vermiculite and phlogopite, Minerals Engineering, 2002, 15, 683–687.
  6. Ashouri Rad, B., Alizadeh, P., Pressure less sintering and mechanical properties of SiO2 – Al2O3 –MgO–K2O–TiO2–F (CaO–Na2O), Ceramics International, 2009, 35, 2775–2780.
  7. Patrıcia, M., Cavalcante, T., Dondi, M., Guarini, M. Barro, F., Luz, A.B.D., Ceramic application of mica titania pearlescent pigments, Dyes and Pigments, 2007, 74, 1-8.
  8. Faeghi-Nia, A., Crystallization and sintering behavior of phlogopite–soda lime composite, Journal of Non-Crystalline Solids, 2011, 357, 3385 –3391.
  9. Gao, Q., Wu, X., Fan, Y., The effect of iron ions on the anatase-rutile phase transformation of titania in mica titania pigments, Dyes and Pigments, 2012, 95, 96-101.
  10. Pal, D.K., Srivastava, P., Durge, S.L., Bhattacharyya, T., Role of weathering of fine-grained micas in potassium management of Indian soils, Applied Clay Science, 2001, 20, 39–52.
  11. Stout, S.A., YCho, Y., Komarneni, S., Uptake of cesium and strontium cationsby potassium-depleted phlogopite, Applied Clay Science, 2006, 31, 306 – 313.
  12. Mittal, V., Polymer Layered Silicate Nanocomposites: A Review, Materials, 2009, 992-1057.
  13. Pavlidou, S., Papaspyrides, C.D., A review on polymer–layered silicate nanocomposites, Progress in Polymer Science, 2008, 33, 1119–1198.
  14. Taruta, S., Fujisawa, R., Kitajima, K., Preparation and mechanical properties of machinable alumina/mica composites, Journal of the European Ceramic Society, 2006, 26, 1687–1693.
  15. KhatibZadeh, S., Samedani, M., EftekhariYekta, B., Hasheminia, S., Effect of sintering and melt casting methods on properties of a machinable fluor- phlogopite glass–ceramic, Journal of Materials Processing Technology, 2008, 203, 113- 116.
  16. FaeghiNia, A., Thermal properties and crystallization of lithium–mica glass and glass-ceramics, Thermochimica Acta, 2013, 564, 1–6.
  17. Rounan, L.I., Peinan, Z.H.U., Phlogopite- based glass ceramics, Journal of Non-Crystalline Solids, 1986, 80, 600-604.
  18. Norman M., Low, P., Cellular structure glass formed with Phlogopite- type mica powdersandcarbonate compounds, Materials Research Bulletin, 1980, 15, 881-890
  19. Jiang, G., Gilbert, M., Hitt, D.J., Wilcox, G.D., Balasubramanian, K., Prepration of nickle coated mica as a conductive filler, Composites: part A, 2002, 33, 745- 751.
  20. Dai, H., Li, H., Wang, F., An alternative process for the preparation of Cu-coated mica composite powder, Surface & Coatings Technology, 2006, 201, 2859 – 2866.
  21. Dai, H., Li, H., Wang, F., Electroless Ni–P coating preparation of conductive mica powder by a modified activation process, Applied Surface Science, 2006, 253, 2474–2480.
  22. Grattan-Bellew P.E., Beaudoin, J.J., Effect of phlogopite micaon alkali- aggregate expansion in concrete, Cement and Concrete Research, 1980, 10, 789-797.
  23. Li, C., Takeichi, Y., Uemura, M., Nakai, T., Sinomiya, M., Tsuya, Y., The friction behavior of Ni-, SiO2- and mica sodium silicatebased solid lubrication composites, Tribology International, 1999, 32, 407–411.
  24. Dell'Anna L., Laviano, R., Mineralogical and chemical classification  of  Pleistocene  clays from the Lucanian Basin  (Southern Italy)  for the use in the Italian tile industry, Applied Clay Science, 1991,  6,  233-243.
  25. Bram, M., Niewolak, L., Shah, N., Sebold, D., Buchkremer, H.P., Interaction of sealing material mica with interconnect steel for solid oxide fuel, Journal of Power Sources, 2011, 196, 5889–5896.
  26. Chou, Y-S., W.Stevenson, J., Hardy, J., Singh, P., Material degradation during isothermal ageing and thermal cycling of hybrid mica seals under solid oxide fuel cell exposure conditions, Journal of Power Sources, 2006, 157, 260–270.
  27. Chou, Y-S., W.Stevenson, J., Phlogopite mica-based compressive seals for solid oxide fuel cells: effect of mica thickness, Journal of Power Sources, 2003, 124, 473–478.
  28. Chou, Y-S., W.Stevenson, J., Long-term thermal cycling of Phlogopite mica-based compressive seals for solid oxide fuel cell, Journal of Power Sources, 2005, 140, 340–345.
  29. Chou, Y-S., W.Stevenson, J., Long-term ageing and materials degradation of hybrid mica compressive seals for solid oxide fuel cells, Journal of Power Sources, 2009, 191, 384–389.
  30. Chou, Y-S., W.Stevenson, J., Novel infiltrated Phlogopite mica compressive seals for solid oxide fuel cells , Journal of Power Sources, 2004, 135, 72–78.
  31. Le, S., Sun, K., Zhang, N., Shao, Y., An, Qiang Fu, M., Zhu, X., Comparison of infiltrated ceramic fiber paper and mica base compressive seals for planar solid oxide fuel cells, Journal of Power Sources, 2007, 168, 447–452.
  32. Venäläinen, S.H., Sorption of lead by phlogopite-rich mine tailings, Applied Geochemistry, 2012, 27, 1593–1599.
  33. Stengl, V., Subrt, J., Bakardjieva, S., Kalendova, A., Kalendab, P., The preparation and characteristics of pigments based on mica coated with metal oxides, Dyes and Pigments, 2003, 58, 239–244.
  34. Jing, C., Hanbing, S.X., The preparation and characteristics of cobalt blue colored mica titania pearlescent pigment by microemulsions, Dyes and Pigments, 2007, 75, 766-769.
  35. Cavalcante, P.M.T., Dondi, M., Guarini, G., Barro, F.M., Luz, A.B., Ceramic application of mica titania pearlescent pigments, Dyes and Pigments, 2007, 74, 1-8.
  36. Limparyoon, N., Seetapan, N., Kiatkamjornwong, S., Acrylamide-2-acrylamido-2-methylpropane sulfonic acid and associated sodium salt superabsorbent copolymer nano composites with mica as fire retardants”, Polymer Degradation and Stability, 2011, 96, 1054-1063.
  37. Zhang, Y.-H., Fu, S.-Y., Li, R.K.-Y., Wu, J.-T., Li, L.-F., Ji, J.-H., Yang S.-Y., Investigation of polyimide–mica hybrid films for cryogenic applications”, Composites Science and Technology, 2005, 65, 1743–1748.
  38. Chen, X., Cheng, Y., Yue, B., Xie, H., Study of epoxy/mica insulation deterioration in generator stator using ultra-wide band partial discharge testing technique, Polymer Testing, 2006, 25, 724–730.
  39. Verbeek, C.J.R., The influence of interfacial adhesion, particle size and size distribution on the predicted mechanical properties of particulate thermoplastic composites, Materials Letters, 2003, 57, 1919– 1924.
  40. Chen, X., Cheng, Y., Yue, B., Xie, H., Study of epoxy/mica insulation deterioration in generator stator using ultra-wide band partial discharge testing technique, Polymer Testing, 2006, 25, 724–730.
  41. Uno, H., Tamura, K., Yamada, H., Umeyama, K., Hatta, T., Moriyoshi, Y., Preparation and mechanical properties of exfoliated mica-polyamide 6 nanocomposites using sericite mica, Applied Clay Science, 2009, 46, 81–87.
  42. Pinto, U.A., Visconte, L.L.Y., Nunes, R.C.R., Mechanical properties of thermoplastic polyurethane elastomers with micaand aluminum trihydrate, European Polymer Journal, 2001, 37, 1935- 1937.
  43. Gan, D., Lu, S., Song, C., Wang, Z., Mechanical properties and fractional behavior of mica- filled poly(aryl ether ketone) composite, European Polymer Journal, 2001, 37, 1359- 1365.
  44. Harraz, H.Z., Hamdy, M.M., Interstratified vermiculite–mica in the gneiss–metapelite –serpentinite rocks at Hafafit area, Southern Eastern Desert, Egypt: From metasomatism to weathering, Journal of African Earth Sciences, 2010, 58, 305–320.
  45. Zaidan, U.H., Abdul Rahman, M.B., Basri, M., Othman, S.S., Abdul Rahman, R.N.Z.R., Salleh, A.B., Silylation of mica for lipase immobilization as biocatalysts in esterification, Applied Clay Science, 2010, 47, 276–282.