نوع مقاله : مقاله کامل پژوهشی

نویسندگان

دانشگاه علم و صنعت ایران ، دانشکده مواد و متالورژی، تهران، ایران

چکیده

هیدروکسی­ آپاتیت به ­دلیل مشابهت با قسمت معدنی استخوان، زیست­ سازگاری و زیست ­فعالی خوب در کاربردهای پزشکی بسیار مورد توجه می­ باشد. در کار پیش رو، نانوذرات هیدروکسی­آپاتیت دوپ شده با کبالت به ­روش هیدروترمال سنتز گردید. برای این منظور، ابتدا محلول کلسیم نیترات و کبالت نیترات با هم مخلوط شده و سپس دی آمونیوم هیدروژن فسفات به­ صورت قطره‌قطره به آن اضافه گردید. در مرحله بعدی سوسپانسیون حاصل تحت شرایط هیدروترمال در دمای 200 درجه سانتی­گراد حرارت داده شد. نتایج XRD پودرهای حاصله نشان داد که جایگزینی یون کبالت با کلسیم با استناد بر تغییر در موقعیت پیک­ ها انجام گرفته است. ضمناً پهن‌شدگی و کاهش شدت پیک­ ها با افزایش مقدار کبالت در نتایج XRD بیانگر تأثیر کبالت بر ساختار هیدروکسی­آپاتیت بود. همچنین نتایج SEM حاکی از تشکیل ذرات در محدوده نانومتری و همین­طور مؤید تغییر مورفولوژی و اندازه ذرات در اثر ورود یون کبالت در ساختار هیدروکسی­ آپاتیت بود. از آنالیز FTIR نیز برای بررسی تأثیر حضور یون­ های کبالت بر ساختار هیدروکسی ­آپاتیت استفاده گردید. نتایج حاصل از آنالیز VSM نیز تغییر رفتار مغناطیسی ماده از حالت دیامغناطیس به پارامغناطیس را نشان داد. با توجه به ویژگی­ های بدست آمده، محصول حاصل پتانسیل خوبی برای کاربرد در زمینه عکس­ برداری به کمک روش تشدید مغناطیسی، درمان هایپرترمی، جداسازی سلول و رهایش دارو نشان می­ دهد.

کلیدواژه‌ها

عنوان مقاله [English]

Chemical Synthesis and Characterization of Physical and Magnetic Properties of Cobalt Doped Hydroxyapatite Nanoparticles

نویسندگان [English]

  • Narges Yazdani
  • Jafar Javadpour
  • Bijan Eftekhari Yekta

Iran University of Science and Technology, school of material and metallurgy, Tehran, Iran

چکیده [English]

 Synthesis of HAp is of considerable interest because of its similariity to mineral component of bone. It has good biocompatibility and bioactivity for bone tissue therapy. In this project, we looked at the effect of calcium substitution with cobalt divalent cation on the structure and magnetic property of HAp. Cobalt- doped HAp  nanoparticles was synthesized via hydrothermal condition. First, Calcium nitrate and Cobalt nitrate was mixed. Then di- ammonium hydrogen phosphate was added drop by drop and finally Co-HAp was precipitated from the solution.  The precipitate was heated at 200°C under hydrothermal condition. XRD pattern analysis verified the substitution of cobalt in HAp structure by showing a shift in the peak positions in the pattern. Furthermore, broadening and reduction in the peak intensities of the peaks with cobalt substitution was also observed in this study. The presence of functional groups
related to HAp structure (PO43-, OH-) were confirmed by FTIR analysis. The size and morphology of nanoparticle HAp
particles were evaluated by FESEM analysis.  Calcium substitution with cobalt induced size reduction and morphology
change in HAp particles. VSM analysis was carried out to investigate the magnetization of HAp and Co-HAp nanoparticles. The results showed that cobalt substituted nanoparticles displayed paramagnetic properties, as opposed to the diamagnetism of pure HAp. Cobalt doped HAp, a biomaterial with magnetic properties, could be used in a variety
of biomedical applications, including magnetic imaging, drug delivery and hyperthermia based cancer treatment.
  

کلیدواژه‌ها [English]

  • Hydroxyapatite
  • Cobalt Doped Hydroxyapatite
  • Hydrothermal Condition
  • Noparticles
  • Paramagnetic
[1]         H. Zhou and J. Lee, “Nanoscale hydroxyapatite particles for bone tissue engineering,” Acta Biomater., vol. 7, no. 7, pp. 2769–2781, 2011.
[2]         J. Kolmas, E. Groszyk, and D. Kwiatkowska-R  ycka, “Substituted Hydroxyapatites with Antibacterial Properties,” Biomed Res. Int., vol. 2014, 2014.
[3]         K. Elkabouss, M. Kacimi, M. Ziyad, S. Ammar, and F. Bozon-Verduraz, “Cobalt-exchanged hydroxyapatite catalysts: magnetic studies, spectroscopic investigations, performance in 2-butanol and ethane oxidative dehydrogenations,” J. Catal., vol. 226, no. 1, pp. 16–24, 2004.
[4]         E. Kramer, E. Itzkowitz, and M. Wei, “Synthesis and characterization of cobalt-substituted hydroxyapatite powders,” Ceram. Int., 2014.
[5]         N. Ignjatovi, Z. Ajdukovi, V. Savi, S. Najman, D. Mihailovi, P. Vasiljevi, Z. Stojanovi, V. Uskokovi, and D. Uskokovi, “Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones,” J. Mater. Sci. Mater. Med., vol. 24, no. 2, pp. 343–354, 2013.
[6]         Z. Stojanovi, L. Veselinovi, S. Markovi, N. Ignjatovi, and D. Uskokovi, “Hydrothermal synthesis of nanosized pure and cobalt-exchanged hydroxyapatite,” Mater. Manuf. Process., vol. 24, no. 10–11, pp. 1096–1103, 2009.
[7]         L. Veselinovic, L. Karanovic, Z. Stojanovic, I. Bracko, S. Markovic, N. Ignjatovic, and D. Uskokovic, “Crystal structure of cobalt-substituted calcium hydroxyapatite nanopowders prepared by hydrothermal processing,” J. Appl. Crystallogr., vol. 43, no. 2, pp. 320–327, 2010.
[8]         K. P. Tank, K. S. Chudasama, V. S. Thaker, and M. J. Joshi, “Cobalt-doped nanohydroxyapatite: synthesis, characterization, antimicrobial and hemolytic studies,” J. nanoparticle Res., vol. 15, no. 5, pp. 1–11, 2013.
[9]         S. Kulanthaivel, U. Mishra, T. Agarwal, S. Giri, K. Pal, K. Pramanik, and I. Banerjee, “Improving the osteogenic and angiogenic properties of synthetic hydroxyapatite by dual doping of bivalent cobalt and magnesium ion,” Ceram. Int., 2015.
[10]       V. Stani, S. Dimitrijevi, J. Anti -Stankovi, M. Mitri, B. Joki, I. B. Ple a, and S. Rai evi, “Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders,” Appl. Surf. Sci., vol. 256, no. 20, pp. 6083–6089, 2010.
[11]       Z. Amjad, Advances in crystal growth inhibition technologies. Springer, 2000.
[12]       M. Sadat-Shojai, M.-T. Khorasani, E. Dinpanah-Khoshdargi, and A. Jamshidi, “Synthesis methods for nanosized hydroxyapatite with diverse structures,” Acta Biomater., vol. 9, no. 8, pp. 7591–7621, 2013.