نویسندگان

1 دانشگاه ملایر، دانشکده مهندسی، گروه مهندسی مواد، ملایر، ایران

2 پژوهشگاه مواد و انرژی، پژوهشکده سرامیک، کرج، ایران

چکیده

در این پژوهش، مواد فعال نانوساختار هیدروکسید دوگانه‌ی لایه‌ای ZnxNi1-x(OH)2 به‌طور موفقیت‌آمیزی با استفاده از روش هم‌رسوبی شیمیایی و به کمک پلی‌اتیلن-گلیکول که نقش جهت‌دهنده به ساختار را دارد، ساخته شدند. مشخصه‌یابی ساختاری با استفاده از تفرق اشعه X و طیف سنجی تبدیل فوریه مادون قرمز انجام شد و مورفولوژی مواد با استفاده ازمیکروسکوپ الکترونی روبشی گسیل میدانی به دست آمد. نتایج نشان می‌دهند که مواد به دست آمده دارای ساختاری متخلخل با دیواره-های نانومتری بوده و عمده ساختار کریستالی آن‌ها فاز α است. بررسی‌های الکتروشیمیایی با استفاده از آزمون‌های ولتامتری چرخه‌ای، شارژ- تخلیه جریان ثابت و چرخه‌پذیری نشان می‌دهند که ماده فعال Zn0.33Ni0.67(OH)2 دارای بیشترین ظرفیت ویژه اولیه معادل F g-1 926 در چگالی جریان A g-1 1 و ابقای ظرفیت حدود 98% پس از 100 چرخه شارژ و تخلیه است.

کلیدواژه‌ها

عنوان مقاله [English]

Synthesis, characterization and electrochemical performance of ZnxNi1-x(OH)2 nanostructured layered double hydroxide active material for supercapacitors

نویسندگان [English]

  • Mahdi Kazazi 1
  • Simin Askari 1
  • Mahya Naghdi 1
  • Shahab Moghadas 2

1 Malayer University, Department of Materials Engineering, Faculty of Engineering, Malayer University, Malayer, Iran

2 Materials and Energy Research Center, Ceramic Division, Karaj, Iran

چکیده [English]

In this research, ZnxNi1-x(OH)2 nanostructured layered double hydroxide active materials were successfully synthesized by a chemical co-precipitation route using polyethylene glycol as the structure-directing reagent. Structural characterizations were performed using X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR), and morphology of materials was obtained by Field Emission Scanning Electron Microscopy (FESEM). The results show that the as-prepared materials have a porous structure with nanoscale walls and their crystal structure was mainly α-phase. Electrochemical experiments using cyclic voltammetry, galvanostatic charge-discharge and cyclability show that Zn0.33Ni0.67(OH)2 active material has the highest initial specific capacitance of 926 F g-1 at a current density of 1 A g-1 and a capacity retention of about 98% after 100 charge-discharge cycles.

کلیدواژه‌ها [English]

  • Supercapacitors
  • nickel-zinc layered double hydroxide
  • electrochemical performance
  • Co-precipitation
  1.  Ma X.J., Kong L.B., Zhang W.B., Liu M.C., Luo Y.C., Kang L., design and synthesis of 3D Co3O4@MMoO4 (M=Ni, Co) nanocomposites as high-performance supercapacitor electrodes, Electrochimica Acta, 2014, 130 (10), 660–669.
  2. Liu P., Hu Z., Liu Y., Yao M., Zhang Q., three-dimensional hierarchical porous flower-like nickel–cobalt oxide/multi-walled carbon nanotubes nanocomposite for high-capacity supercapacitors, Journal of Alloys and Compounds, 2015, 622 (2), 805–811.
  3. Tao Y, Haiyan Z, Ruiyi L, Zaijun L, Junkang L, Guangli W, Zhiquo G, microwave synthesis of nickel/cobalt double hydroxide ultrathin flowerclusters with three-dimensional structures for high-performance supercapacitors, Electrochimica Acta, 2013, 111 (1), 71- 79.
  4. ConwayE., transition from “Supercapacitor” to “Battery” behavior in electrochemical energy storage, Journal of Electrochemical Society, 1991, 138 (6), 1539-1548.
  5. Prasad K.R., Koga K., Miura N., electrochemical deposition of nanostructured indium oxide: high-performance electrode material for redox supercapacitors, Chemistry of Materials, 2004, 16 (10), 1845-1847.
  6. Gupta V., Kusahara T., Toyama H., Gupta S., Miura N., potentiostatically deposited nanostructured α-Co(OH)2: A high performance electrode material for redox-capacitors, Electrochemistry Communications, 2007, 9 (9), 2315-2319.
  7. Wang H., Casalongue H.S., Liang Y., Dai H., Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials, Journal of American Chemical Society, 2010, 132 (21), 7472-7477.
  8. Hu C.C., Chen W.C., effects of substrates on the capacitive performance of RuOx·nH2O and activated carbon–RuOx electrodes for supercapacitors, Electrochimica Acta, 2004, 49 (21), 3469–3477.
  9. Fan Z., Chen J., Cui K., Sun F., Xu Y., Kuang Y., preparation and capacitive properties of cobalt–nickel oxides/carbon nanotube composites, Electrochimica Acta, 2007, 52 (9), 959-2965.
  10. Zhao D.D., Bao S.S., Zhou W.J., Li H.L., preparation of hexagonal nanoporous nickel hydroxide film and its application for electrochemical capacitor, Electrochemistry Communications, 2007, 9 (5), 869–874.
  11. Liang Y.Y., Bao S.J., Li H.L., nanocrystalline nickel cobalt hydroxides/ultrastable Y zeolite composite for electrochemical capacitors, Journal of Solid State Electrochemistry, 2007, 11 (5), 571-576.
  12. Xia D., Chen H., Jiang J., Zhang L., Zhao Y., Guo D., Yu J., facilely synthesized a phase nickel–cobalt bimetallic hydroxides: tuning the composition for high pseudocapacitance, Electrochimica Acta, 2015, 156 (5), 108–114.
  13. Sun, Wang G., Sun H., Lu F., Yu M., Lian J., morphology controlled high performance supercapacitor behaviour of the Ni–Co binary hydroxide system, Journal of Power Sources, 2013, 238 (8), 150–156.
  14. Han J., Roh K.C., Jo M.R., Kang Y.M., a novel co-precipitation method for one-pot fabrication of a Co–Ni multiphase composite electrode and its application in high energy-density pseudocapacitors, Chemical Communications, 2013, 49 (63), 7067-7069.
  15. Chen H., Hu L., Chen M., Yan Y., Wu L., nickel–cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials, Advanced Functional Materials, 2013, 24 (7), 934-942.
  16. Hu W.K., Gao X.P., Noréus D., Burchardt T., Nakstad N.K., evaluation of nano-crystal sized α-nickel hydroxide as an electrode material for alkaline rechargeable cells, Journal of Power Sources, 2006, 160 (1), 704–710.
  17. Zhao Y.L., Wang J.M., Chen H., Pan T., Zhang J.Q., Cao C.N., different additives-substituted α-nickel hydroxide prepared by urea decomposition, Electrochimica Acta, 2004, 50 (1), 91–98.
  18. Wang Y., Gai S., Li C., He F., Zhang M., Yan Y., Yang P., controlled synthesis and enhanced supercapacitor performance of uniform pompon-like β-Ni(OH)2 hollow microspheres, Electrochimica Acta, 2013, 90 (10), 673-681.
  19. Sebastian M., Nethravathi C., Rajamathi M., interstratified hybrids of α-hydroxides of nickel and cobalt as supercapacitor electrode materials, Materials Research Bulletin, 2013. 48 (7), 2715-2719.
  20. Bing L., Huatang Y., Yunshi Z., Zuoxiang Z., Deying S., cyclic voltammetric studies of stabilized α-nickel hydroxide electrode, Journal of Power Sources, 1999, 79 (2), 277–280.
  21. Coudun C., Hochepied J.F., nickel hydroxide “stacks of pancakes” obtained by the coupled effect of ammonia and template agent, 2005, 109 (13), 6069-6074.
  22. Liu Z., Ma R., Osada M., Takada K., Sasaki T., selective and controlled synthesis of α- and β-cobalt hydroxides in highly developed hexagonal platelets, Journal of American Chemical Society, 2005, 127 (40), 13869-13874.
  23. Zhu Y., Li H., Koltypin Y., Gedanken A., preparation of nanosized cobalt hydroxides and oxyhydroxide assisted by sonication, Journal of Materials Chemistry, 2002, 12 (3), 729-733.
  24. Wu H.Y., Xie Y.L., Hu Z.A., synthesis, characterization and electrochemical properties of board-like Al-substituted alpha nickel hydroxides, International Journal of Electrochemical Science, 2013, 8 (1), 1839-1848.
  25. Cui H., Xue J., Wang M., synthesis of high electrochemical performance Ni(OH)2 nanosheets through a solvent-free reaction for application in supercapacitor, Advanced Powder Technology, 2015, 26 (2), 434–438.
  26. Tao Y., Ruiyi L., Tingting Y., Zaijun L., nickel/cobalt layered double hydroxide hollow microspheres with hydrangea-like morphology for high-performance supercapacitors, Electrochimica Acta, 2015, 152 (2), 530-537.
  27.