نویسندگان

1 دانشگاه شهرکرد، دانشکده فنی و مهندسی، شهرکرد، ایران.

2 مرکز تحقیقات مواد پیشرفته، دانشکده مهندسی مواد، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران.

3 باشگاه پژوهشگران جوان و نخبگان، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، اصفهان، ایران.

چکیده

در این پژوهش تولید نانوپودر کامپوزیتی Co/ VC از مواد اولیه Co3O4، V2O5 و گرافیت با استفاده از پودر منیزیم به عنوان عامل احیا به روش مکانوشیمیایی بررسی شد. برای این منظور مخلوط پودری مواد طبق واکنش استوکیومتری در یک آسیا سیاره?ای پرانرژی با نسبت وزنی پودر به گلوله 1:20 تحت آتمسفر گاز آرگون در زمان?های مختلف آسیا شدند. پس از 10 دقیقه آسیاکاری احتراق صورت گرفته و با توجه به نتایج XRD، منیزیم توانسته اکسیدهای کبالت و وانادیم را احیا کرده و خود به اکسید منیزیم تبدیل شود و از طرفی گرافیت نیز با وانادیم فلزی، کاربید وانادیم تشکیل داده و واکنش به طور کامل انجام گرفته است. با توجه به دمای آدیاباتیک واکنش (3932.014Tad~)، این واکنش از نوع خود پیش?رونده دما بالا یا MSR می?باشد. اندازه بلورک?های کاربید وانادیم و کبالت نیز از روش ویلیامسون- هال محاسبه گردید که به ترتیب 50 و 10 نانومتر گزارش شده است. در نهایت فاز اکسید منیزیم نیز توسط فرآیند اسیدشویی با اسید کلریدریک 9 درصد از سیستم حذف گردید و پودر کامپوزیتی Co/ VC تولید شد.

کلیدواژه‌ها

عنوان مقاله [English]

Synthesis and Characterization of the Composite Co/VC Nano Powder by Mechanochemical Method and Investigating the Reaction Thermodynamic Behavior

نویسندگان [English]

  • Hassan Sharifi 1
  • Seyed Mohammad Razavi 2
  • Danial Davoodi 3

1 University of Shahrekord, Faculty of Engineering, Shahrekord, Iran

2 Advanced Materials Researcher Center, Faculty of Materials Engineering, NajafAbad Branche, Islamic Azad University, Najafabad, Iran.

3 Young Reserchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad ,Isfahan, Iran.

چکیده [English]

In the present study, production of the composite nano powder of Co/VC by mechanochemical method from Co3O4, V2O5, and graphite as the starting materials with magnesium as the reduction agent was investigated. For this purpose, the materials powder mixture was milled in accordance with stoichiometric reaction in a high energy ball mill with the ball-to-powder ratio of 20:1 under argon atmosphere for different durations. After 10min of milling, combustion occurred and the XRD results indicated that magnesium has reduced vanadium and cobalt oxides (V2O5 and Co3O4) and has changed into magnesium oxide; also, graphite has reacted with the metallic vanadium to form vanadium carbide, which means that the reaction has been completed. Based on the adiabatic temperature of the reaction (Tad~ 3932.014), the reaction was identified as a mechanically inducted self-sustaining one or MSR. The crystallite sizes of vanadium carbide and cobalt calculated by the Williamson-Hall equation were 50 and 10nm, respectively. Finally, the magnesium oxide phase was deleted from the system via leaching process in 0.9% hydrochloric acid and the composite powder of Co/VC was obtained.

کلیدواژه‌ها [English]

  • Nanocomposite
  • Mechanochemical
  • Vanadium carbide
  • FE-SEM
  • MSR
  1. “Industrial minerals and rocks, Stanley J. lefond”, Society of mining engineers 1983.
  2. “An Introduction to the Rock Forming Minerals”
  3. Uses of Industrial minerals and rocks and freshwater, Kavlierkisorchatterjee, Nova Science publishers, Inc, 2009.
  4. Mica and mica industry B.B.L. Madhvkar, S.N.P. Srivastava, A.A. Balkema/ Rotterdam, 1995.
  5. J.R. Verbeek, “Highly filled polyethylener/phlogopite composites”, Materials Letters 52 (2002) 453–457.
  6. FaeghiNia, T. Ebadzadeh, “Fabrication of machinablephlogopite–glass composite using microwave processing”, Ceramics International 38 (2012) 2653–2658.
  7. Obut, I. Girgin, “Hydrogen peroxide exfoliation of vermiculite and phlogopite”, Minerals Engineering 15 (2002) 683–687.
  8. Ashouri Rad, P. Alizadeh, “Pressureless sintering and mechanical properties of SiO2 – Al2O3 –MgO–K2O–TiO2 –F (CaO–Na2O), Ceramics International 35 (2009) 2775–2780.
  9. Patrıcia M. TenorioCavalcante, Michele Dondi ,GuiaGuarini, Fernanda M. Barro, AdaoBenvindo da Luz, “Ceramic application of mica titania pearlescent pigments”, Dyes and Pigments 74 (2007) 1-8 .
  10. Faeghi-Nia, “Crystallization and sintering behavior of phlogopite–soda lime composite “, Journal of Non-Crystalline Solids 357 (2011) 3385 –3391.
  11. QiangGao, Xiaomei Wu, Yueming Fan,” The effect of iron ions on the anatase-rutile phase transformation of titania in mica titania pigments”, Dyes and Pigments 95 (2012) 96-101.
  12. K. Pal, P. Srivastava, S.L. Durge, T. Bhattacharyya, “Role of weathering of fine-grained micas in potassium management of Indian soils “, Applied Clay Science 20 (2001) 39–52 .
  13. Stephen A. Stout, Yunchul Cho b, Sridhar Komarneni, “Uptake of cesium and strontium cationsby potassium-depleted phlogopite”, Applied Clay Science 31 (2006) 306 – 313.
  14. Vikas Mittal, “Polymer Layered Silicate Nanocomposites: A Review”, Materials 2009, 2, 992-1057; doi:10.3390/ma2030992
  15. Pavlidou, C.D. Papaspyrides, “A review on polymer–layered silicate nanocomposites “,Progress in Polymer Science 33 (2008) 1119–1198.
  16. Seiichi Taruta∗, Ryuji Fujisawa, KunioKitajima, “Preparation and mechanical properties of machinable alumina/mica composites”, Journal of the European Ceramic Society 26 (2006) 1687–1693.
  17. KhatibZadeh, M. Samedani, B. EftekhariYekta , S. Hasheminia, “Effect of sintering and melt casting methods on properties of a machinablefluor-phlogopite glass–ceramic”, Journal of materials processing technology 203 (2008) 113- 116.
  18. FaeghiNia, “Thermal properties and crystallization of lithium–mica glass and glass-ceramics”, ThermochimicaActa 564 (2013) 1–6.
  19. LI Rounan,  Z H U  Peinan, “PHLOGOPITE-BASED GLASS CERAMICS”, Journal of Non-Crystalline Solids 80 (1986) 600-604.
  20. Norman M.   Low, “CELLULAR-STRUCTURE GLASS FORMED WITH PHLOGOPITE-TYPE MICA POWDERSAND CARBONATECOMPOUNDS”, Mat. Res. Bull, Vol. 15, pp.  881-890, 1980
  21. Jiang, M. Gilbert, D.J. Hitt, G.D. Wilcox, K. Balasubramanian, “Prepration of nickle coated mica as a conductive filler”, Composites: part A 33 (2002) 745- 751.
  22. Hongbin Dai, Hongxi Li, Fuhui Wang, “An alternative process for the preparation of Cu-coated mica composite powder”, Surface & Coatings Technology 201 (2006) 2859 – 2866.
  23. Hongbin Dai, Hongxi Li, Fuhui Wang, “Electroless Ni–P coating preparation of conductive mica powder by a modified activation process”, Applied Surface Science 253 (2006) 2474–2480.A
  24. E. Grattan-Bellew  and J.J. Beaudoin , “EFFECT  OF  PHLOGOPITE  MICA ON  ALKALI-AGGREGATE EXPANSION  IN   CONCRETE”, CEMENT and  CONCRETE RESEARCH.Vol.10, pp. 789-797,  1980.
  25. Changsheng Li, Yoshinori Takeichi, Masao Uemura, Tsuyoshi Nakai , Mamoru, Sinomiya, Yuko Tsuya, “The friction behavior of Ni-, SiO2- and mica sodium silicatebased solid lubrication composites”, Tribology International 32 (1999) 407–411.
  26. Luigi Dell'Anna and Rocco Laviano, “ Mineralogical  and chemical classification  of  Pleistocene  clays from the Lucanian Basin  (Southern Italy)  for the use in the Italian tile industry”, Applied Clay Science, 6  (1991 ) 233-243
  27. Martin Bram, LeszekNiewolak, Nikhil Shah, Doris Sebold, Hans Peter Buchkremer , “Interaction of sealing material mica with interconnect steel for solid oxide fuel “, Journal of Power Sources 196 (2011) 5889–5896.
  28. Yeong-Shyung Chou, Jeffry W. Stevenson, John Hardy, Prabhakar Singh, “Material degradation during isothermal ageing and thermal cycling of hybrid mica seals under solid oxide fuel cell exposure conditions”, Journal of Power Sources 157 (2006) 260–270
  29. Yeong-Shyung Chou, Jeffry W. Stevenson, “Phlogopite mica-based compressive seals for solid oxide fuel cells: effect of mica thickness”, Journal of Power Sources 124 (2003) 473–478.
  30. Yeong-Shyung Chou, Jeffry W. Stevenson, “Long-term thermal cycling of Phlogopite mica-based compressive seals for solid oxide fuel cells”, Journal of Power Sources 140 (2005) 340–345.
  31. Yeong-Shyung Chou, J.W. Stevenson, “Long-term ageing and materials degradation of hybrid mica compressive seals for solid oxide fuel cells”, Journal of Power Sources 191 (2009) 384–389.
  32. Yeong-Shyung Chou, Jeffry W. Stevenson,” Novel infiltrated Phlogopite mica compressive seals for solid oxide fuel cells”, Journal of Power Sources 135 (2004) 72–78.
  33. Shiru Le, Kening Sun, Naiqing Zhang , Yanbin Shao, Maozhong An, Qiang Fu, Xiaodong Zhu, “ Comparison of infiltrated ceramic fiber paper and mica base compressive seals for planar solid oxide fuel cells”, Journal of Power Sources 168 (2007) 447–452
  34. Salla H. Venäläinen, “Sorption of lead by phlogopite-rich mine tailings”, Applied Geochemistry 27 (2012) 1593–1599.
  35. Vaclav Stengl, Jan Subrt, SnejanaBakardjieva, Andrea Kalendova, PetrKalendab , “The preparation and characteristics of pigments based on mica coated with metal oxides”, Dyes and Pigments 58 (2003) 239–244
  36. Jing, Shi XiaoboHanbing, “The preparation and characteristics of cobalt blue colored mica titania pearlescent pigment by microemulsions”, Dyes and Pigments 75 (2007) 766e769.
  37. Patrıcia M. TenorioCavalcante, Michele Dondi ,GuiaGuarini, Fernanda M. Barro, AdaoBenvindo da Luz, “Ceramic application of mica titania pearlescent pigments”, Dyes and Pigments 74 (2007) 1-8 .
  38. NattawutLimparyoon, NispaSeetapan, SudaKiatkamjornwong, “Acrylamide/2-acrylamido-2-methylpropane sulfonic acid and associated sodium salt superabsorbent copolymer nano composites with mica as fire retardants”, Polymer Degradation and Stability 96 (2011) 1054e1063
  39. Yi-He Zhang, Shao-Yun Fu, Robert K.-Y. Li, Jun-Tao Wu, “Investigation of polyimide–mica hybrid films for cryogenic applications”, Composites Science and Technology 65 (2005) 1743–1748.
  40. Xiaolin Chen, Yonghong Cheng, Bo Yue, HengkunXie, “Study of epoxy/mica insulation deterioration in generator stator using ultra-wide band partial discharge testing technique”, Polymer Testing 25 (2006) 724–730.
  41. J.R. Verbeek, “ The influence of interfacial adhesion, particle size and size distribution on the predicted mechanical properties of particulate thermoplastic composites”, Materials Letters 57 (2003) 1919– 1924.
  42. Xiaolin Chen, Yonghong Cheng, Bo Yue, HengkunXie, “Study of epoxy/mica insulation deterioration in generator stator using ultra-wide band partial discharge testing technique”, Polymer Testing 25 (2006) 724–730.
  43. Hikaru Uno, Kenji Tamura, Hirohisa Yamada, Kiyoshi Umeyama, TamaoHatta, Yusuke Moriyoshi, “Preparation and mechanical properties of exfoliated mica-polyamide 6 nanocomposites using sericite mica”, Applied Clay Science 46 (2009) 81–87.
  44. Ubirajara Almeida Pinto, Leila Lea Yuan Visconte, Regina Celia Reis Nunes, “Mechanical properties of thermoplastic polyurethane elastomers with micaand aluminum trihydrate”, European Polymer Journal 37 (2001) 1935- 1937.
  45. DaojiGan, Shiqiang Lu, Casheng Song, Zhijian Wang, “Mechanical properties and fractional behavior of mica- filled poly(aryl ether ketone) composite”, European Polymer Journal 37 (2001) 1359- 1365.
  46. Z. Harraz, M.M. Hamdy, “Interstratified vermiculite–mica in the gneiss–metapelite–serpentinite rocks at Hafafit area, Southern Eastern Desert, Egypt: From metasomatism to weathering”, Journal of African Earth Sciences 58 (2010) 305–320.
  47. UswatunHasanahZaidan, MohdBasyaruddin Abdul Rahman, MahiranBasri, SitiSalhah Othman, Raja Noor Zaliha Raja Abdul Rahman, Abu BakarSalleh, “Silylation of mica for lipase immobilization as biocatalysts in esterification”, Applied Clay Science 47 (2010) 276–282