نویسندگان

پژوهشگاه مواد و انرژی، کرج، ایران

چکیده

لیپازها در زمینه های گسترده ای از علم زیست فن آوری به ویژه لبنیاتی، شوینده ها، مواد دارویی (ایبوپروفن، ناپروکسن)، مواد شیمیایی، کشاورزی (آفت کشها، حشره کش ها) و شیمی روغن (هیدرولیز چربی و روغن) کاربرد دارند. به منظور افزایش نیمه عمر آنزیم و استفاده مکرر از آن، در این تحقیق تثبیت لیپاز بر روی پایه‌ مزومتخلخل سیلیکایی SBA-15  (Santa Barbara Amorphous-15)، صورت پذیرفته و اثر کاهش طول کانال های تخلخل در میزان جذب لیپاز مورد بررسی قرار گرفته است. با توجه به نفوذ کند آنزیم لیپاز، علاوه بر افزایش قطر تخلخل‌ها و بالا بردن سطح ویژه، کاهش طول کانال ها نیز از پارامترهای موثر در افزایش میزان جذب آنزیم در داخل تخلخل های SBA-15 می‌باشد. در این تحقیق برای اولین بار اثر کاهش طول کانال‌های SBA-15 بر روی میزان جذب فیزیکی آنزیم لیپاز مورد بررسی قرار گرفت. به منظور ساختSBA-15 از کوپلیمر سه بلوکی P123 (Triblock Copolymer Pluronic P-123)، به عنوان هدایت کننده ساختار و تترا اتیل اورتوسیلیکات به عنوان منبع سیلیکایی در محیط اسیدی استفاده شد. تترا متیل بنزن برای افزایش قطر تخلخل‌ها مورد استفاده قرار گرفت. با تنظیم زمان پیش هیدرولیز به مدت 30 دقیقه، بهترین اندازه تخلخل با حفظ نظم ساختاری به دست آمد. به منظور کاهش طول کانال‌ها از یون زیرکونیوم چهار ظرفیتی به صورت ترکیب کلرید زیرکونیل هشت آبه استفاده شد.به کمک روش‌های پراش پرتو ایکس کم دامنه، منحنی جذب و واجذب نیتروژن ، تصاویر میکروسکوپ الکترونی روبشی و عبوری، طیف سنجی مادون قرمز تبدیل فوریه و آنالیز حرارتی اثر زمان پیش هیدرولیز و یون زیرکونیوم مورد بررسی قرار گرفت. با استفاده از اصلاحات انجام شده در روش سنتز معمول ژائو، سطح ویژه 782 متر مربع بر گرم و توزیع اندازه تخلخل در حدود 10 نانومتر برای نمونه‌های مزومتخلخل سیلیکایی SBA-15 به دست آمد. کاهش طول کانال‌های مزومتخلخل از حدود800 نانومتر به کمتر از 100 نانومتر نیز از دستاوردهای این تحقیق بوده است. میزان جذب آنزیم لیپاز در بایوکاتلیست اصلاح شده از 473 میلی گرم بر گرم مزومتخلخل به 783 میلی گرم بر گرم رسید. 

کلیدواژه‌ها

عنوان مقاله [English]

Tuning the Morphology of SBA-15 Silica Materials from Rodlike to Platelet in the Presence of Zirconium

نویسندگان [English]

  • Maryam Ferdousi Bavil Aliayi
  • Mohammad Pazouki
  • Fereydon Alikhani Hesari
  • Mahmood Kazemzad Asiabi

Materials and Energy Research Center, Karaj, Iran

چکیده [English]

Lipases find great use in a broad number of biotechnology fields, especially dairy, detergents, drugs (ibuprofen,
naproxen), chemicals, agriculture (pesticides, insecticides) and oil chemistry (the hydrolysis of fats and oils). In order to increase the half-life of the enzyme and repeated use of it, in this study the immobilization of lipase on the mesoporous silica SBA-15 has been investigated. For the first time, the effect of shortening rod channels on the adsorption capacity of porcine pancreatic lipase (PPL) has been studied. Due to the slowly diffusion of large lipase molecules, in addition to increase surface area by expanding the pore diameter, shortening of mesochannels can be considered as an effective parameter on the adsorption properties. Triblock copolymer Pluronic P123 and tetraethyl orthosilicate (TEOS) were used as structure directing agent and silica source in acidic media respectively. Tetramethylbenzidine (TMB) was used as a swelling agent for expanding pore diameter up to 10 nm. The well-ordered 2D hexagonal pore structure was obtained after prehydrolyzing silica for about 30 minutes. Shortening of rod mesochannels from 800nm to 100nm was also maintained in the presence of small amount of ZrOCl2.8H2O. Structural analysis by low angle XRD, nitrogen adsorption, scanning electron microscopy (SEM), high resolution transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy confirmed tuning effect of Zr in SBA-15 materials. The amount of lipases adsorbed on the
mesoporous SBA-15 was determined by thermal gravimetric analysis. By optimizing synthesis parameters, the uptake capacity of PPL into the mesoporous silica was remarkably increased from 473.2 mg/g to 783.9 mg/g.

کلیدواژه‌ها [English]

  • Mesoporous silica materials
  • SBA-15
  • Platelet
  • Prehydrolysis
  • Immobilization
  • Lipase
  1. P. Linton, H. Wennerstrom and V. Alfredsson, Physical Chemistry Chemical Physics 2010, 12, 3852-3858.
  2. X. Cui, W.-C. Zin, W.-J. Cho and C.-S. Ha, Materials Letters 2005, 59, 2257-2261.
  3. Y. Wang, F. Zhang, Y. Wang, J. Ren, C. Li, X. Liu, Y. Guo, Y. Guo and G. Lu, Materials Chemistry and Physics 2009, 115, 649-655.
  4. Y. Wan, Y. Shi and D. Zhao, Chemical Communications 2007, 897-926.
  5. F. Hoffmann, M. Cornelius, J. Morell and M. Froba, Angewandte Chemie International Edition 2006, 45, 3216-3251.
  6. M. Hartmann, Chemistry of Materials 2005, 17, 4577-4593.
  7. P. F. Fulvio, S. Pikus and M. Jaroniec, Journal of Materials Chemistry 2005, 15, 5049-5053.
  8. Y. Yokogawa, T. Toma, A. Saito, A. Nakamura and I. Kishida, Bioceramics Development and Applications 2010, 1, 1-3.
  9. Sujandi, E. A. Prasetyanto and S.-E. Park, Applied Catalysis A: General 2008, 350, 244-251.
  10. D. M. Do, S. Jaenicke and G.-K. Chuah, Catalysis Science & Technology 2012, 2, 1417-1424.
  11. Y. Han and J. Y. Ying, Angewandte Chemie International Edition 2005, 44, 288-292.
  12. S.-R. Zhai, S. S. Park, M. Park, M. Habib Ullah and C.-S. Ha, Microporous and Mesoporous Materials 2008, 113, 47-55.
  13. S.-Y. Chen, Y.-T. Chen, J.-J. Lee and S. Cheng, Journal of Materials Chemistry 2011, 21, 5693-5703.
  14. S. Shio, A. Kimura, M. Yamaguchi, K. Yoshida and K. Kuroda, Chemical Communications 1998, 2461-2462.
  15. S.-Y. Chen, J.-F. Lee and S. Cheng, Journal of Catalysis 2010, 270, 196-205.
  16. S.-Y. Chen, C.-Y. Tang, W.-T. Chuang, J.-J. Lee, Y.-L. Tsai, J. C. C. Chan, C.-Y. Lin, Y.-C. Liu and S. Cheng, Chemistry of Materials 2008, 20, 3906-3916.
  17. a) D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka and G. D. Stucky, Science 1998, 279, 548-552; b)           B. P. Feuston and J. B. Higgins, The Journal of Physical Chemistry 1994, 98, 4459-4462.
  18. S.-Y. Chen, T. Mochizuki, Y. Abe, M. Toba and Y. Yoshimura, Applied Catalysis B: Environmental 2014, 148–149, 344-356.
  19. C. P. Tripp and M. L. Hair, Langmuir 1992, 8, 1120-1126.
  20. R. Tian, O. Seitz, M. Li, W. Hu, Y. J. Chabal and J. Gao, Langmuir 2010, 26, 4563-4566.
  21. L. Lizama and T. Klimova, Journal of Materials Science 2009, 44, 6617-6628.
  22. S. Kongwudthiti, P. Praserthdam, W. Tanakulrungsank and M. Inoue, Journal of Materials Processing Technology 2003, 136, 186-189.
  23. A. A. Mendes, P. C. Oliveira and H. F. de Castro, Journal of Molecular Catalysis B: Enzymatic 2012, 78, 119-134.
  24. L. A. Solovyov, Chemical Society Reviews 2013, 42, 3708-3720.