نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشگاه تربیت مدرس، دانشکده فنی و مهندسی، بخش مهندسی مواد، گروه سرامیک، تهران، ایران

2 پژوهشگاه نیرو، پژوهشکده شیمی و مواد، گروه مواد غیر فلزی، تهران، ایران

3 دانشگاه تربیت مدرس، دانشکده مهندسی برق و کامپیوتر، تهران، ایران

چکیده

در این مطالعه، فاز نیترید تیتانیم (TiN) به روش شیمیایی بر روی سطح و داخل ساختار متخلخل گرافن سه بعدی (3DG) رسوب داده شد. این روش شامل غوطه ­ور کردن 3DG داخل یک محلول حاوی یون­ های تیتانیم و سپس عملیات حرارتی آن در اتمسفر آمونیا می­ باشد. در این مقاله اثر دمای عملیات حرارتی بر نوع فازهای تشکیل شده، مورفولوژی و استوکیومتری آنها بررسی شده است. بدین منظور نمونه­ ها در سه دمای مختلف 750، 800 و 850 درجه سانتیگراد عملیات حرارتی و سپس تحت آنالیزهای XRD، SEM و XPS قرار گرفتند. نتایج نشان داد که افزایش دمای عملیات حرارتی منجر به افزایش ثابت شبکه و اندازه بلورک­ ها و نیز کاهش میزان اکسیژن داخل ساختار TiN می ­شود. مناسب ترین درصد استوکیومتری برابر با نسبت اتمی تیتانیم به نیتروژن 09/1، در دمای عملیات حرارتی C° 850 به دست آمد.

کلیدواژه‌ها

عنوان مقاله [English]

Effect of Annealing Temperature on Structural Properties of Nanostructured TiN-3DG Composite Synthesized by Chemical Method

نویسندگان [English]

  • Fatemeh Dabir 1
  • Rasol Sarraf-Mamoory 1
  • Nastaran Riahi-Noori 2
  • Vahid Ahmadi 3

1 Tarbiat Modares University, Faculty of Engineering and Technology, Tehran, Iran

2 Niroo Research Institute, Chemistry and Materials Research Center, Tehran, Iran

3 Tarbiat Modares University, Faculty of Electrical and Computer Engineering, Tehran, Iran

چکیده [English]

In this study, titanium nitride (TiN) phase was deposited on the surface and into porous structure of three-dimensional graphene (3DG) by chemical method. This method consists of immersing of 3DG into a solution containing Ti ions and annealing under ammonia atmosphere. In this paper, effect of annealing temperature on type of synthesized phases, their morphology, and stoichiometry was investigated. For this purpose, the samples were annealed at three different temperatures of 750, 800, and 850 °C and analyzed by XRD, SEM and XPS. The results showed that increasing of annealing temperature results in increasing of lattice parameter and crystallite size, while decreasing of oxygen content inside TiN structure. Annealing at 850 °C was resulted to the most stoichiometric composition with titanium/ nitrogen atomic ratio of 1.09.

کلیدواژه‌ها [English]

  • Three-dimensional Graphene
  • Titanium Nitride
  • Chemical Method
  • structural Properties
 1. Katsnelson, M. I., Graphene: carbon in two dimensions, Materials today, 2007, 10 (1-2).
2. Yavari, F., Chen, Z., Thomas, A. V., Ren, W., Cheng, H. M., Koratkar, N., High Sensitivity Gas Detection Using a Macroscopic Three-Dimensional Graphene Foam Network, Scientific Reports1, 2011, Article number:166.
3. Maiyalagan, T., Dong, X., Chen, P., Wang, X., Electrodeposited Pt on three-dimensional interconnected graphene as a free-standing electrode for fuel cell application, Journal of Materials Chemistry, 2012, 22, 5286–5290.
4. Ji, H. X., Zhang, L.L., Pettes, M. T., Li, H. F., Chen, S. S., Shi, L., Piner, R., Ruoff, R. S., Ultra-Thin Graphite Foam: A Three-Dimensional Conductive Network for Battery Electrodes, Nano Letters, 2012, 12, 2446–2451.
5.  Wu, Z. S., Sun, Y., Tan, Y. Z., Yang, S., Feng, X., Müllen, K., Three-Dimensional Graphene-Based Macro and Mesoporous Frameworks for High-Performance Electrochemical Capacitive Energy Storage, Journal of American. Chemistry Society, 2012, 134 (48), 19532–19535.
6. Chen, Z., Ren, W., Gao, L., Liu, B., Pei, S., Cheng, H. M., Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition, Nature Materials, 2011, 10, 424–428.
7. Cao, X., Zheng, B., Rui, X., Shi, W., Yan, Q., Zhang, H., Metal Oxide-Coated Three-Dimensional Graphene Prepared by the Use of Metal–Organic Frameworks as Precursors, Angewandte Chemie International Edition, 2014, 53, 1404–1409.
8. Wen, Z., Cui, S., Pu, H., Mao, S., Yu, K., Feng, X., Chen, J., Metal Nitride/Graphene Nanohybrids: General Synthesis and Multifunctional Titanium Nitride/Graphene Electrocatalyst, Advanced Materials, 2011, 23, 5445–5450. 
9. Gray, D., McCaughan, A., Mookerji, B., Crystal Structure of Graphite, Graphene and Silicon, Physics for Solid State Applications, 2009.
10. Subramanian, B., Jayachandran, M., Characterization of reactive magnetron sputtered nanocrystalline titanium nitride (TiN) thin films with brush plated Ni interlayer", Journal of Applied Electrochemistry, 2007, 37, 1069–1075.
11. Patterson, A. L., The Scherrer Formula for X-Ray Particle Size Determination, Physics Review, 1939, 56, 978.
12. Galvanetto, E., Galliano, F.P., Borgioli, F., Bardi, U., Lavacchi, A., XRD and XPS study on reactive plasma sprayed titanium-titanium nitride coatings, Thin Solid Films, 2001, 384, 223-229.
13. Zukalova, M., Prochazka, J., Bastl, Z., Duchoslav, J., Rubacek, L., Havlicek, D., Kavan, L., Facile Conversion of Electrospun TiO2 into Titanium Nitride/Oxynitride Fibers, American Chemical Society, 2010.
14. Bello, A., Fabiane, M., Dodoo-Arhin, D., Ozoemena K.I., Manyala, N., Silver Nanoparticles Decorated on a Three-Dimensional Graphene Scaffold for Electrochemical Applications, Journal of Physics and Chemistry of Solids, 2014, 75, 109-114.
15. Chae, S.J., Güneş, F., Kim, K.K., Kim, E.S., Han, G.H., Kim, S.M., Shin, H.J., Yoon, S., Choi, J., Park, M.H., Yang, C.W., Pribat, D., Lee, Y.H., Synthesis of Large-Area Graphene Layers on Poly-Nickel Substrate by Chemical Vapor Deposition: Wrinkle Formation, Advanced Materials, 2009, 21, 2328–2333.
16. Liu, M., Dong, Y., Wu, Y., Feng, H., Li, J., Titanium Nitride Nanocrystals on Nitrogen-Doped Graphene as an Efficient Electrocatalyst for Oxygen Reduction Reaction, Chemistry-A European Journal, 2013, 19, 14781 – 14786.
17. Jiang, N., Zhang, H.J., Bao, S.N., Shen, Y.G., Zhou, Z.F., XPS study for reactively sputtered titanium nitride thin films deposited under different substrate bias, Physica B, 2004, 352, 118–126.
18. Barhai, P.K., Kumari, N., Banerjee, I., Pabi, S.K., Mahapatra, S.K., Study of the effect of plasma current density on the formation of titanium nitride and titanium oxynitride thin films prepared by reactive DC magnetron sputtering, Vacuum, 2010, 84, 896–901.
19.  Brat, T., Parikh, N., Tsai, N. S., Sinha, A. K., Poole, J., Wickersham, C., Characterization of titanium nitride films sputter deposited from a high‐purity titanium nitride target, Journal of Vacuum Science & Technology B, 1987, 5(6), 1741-1748.