نوع مقاله : مقاله کامل پژوهشی

نویسنده

استادیار، پژوهشکده فناوری نانو و مواد پیشرفته، پژوهشگاه مواد و انرژی، کرج، ایران

10.30501/jamt.2024.409176.1285

چکیده

پیش‌بینی اجزای بافت کریستالی و شبیه‌سازی تغییرات ریزساختار، به مهار و طراحی خواص فیزیکی و مکانیکی نهایی کمک می‌کند. در این تحقیق با به‌کارگیری هم‌زمان شبیه‌سازی المان محدود و مدل‌سازی پلاستیسیتة کریستالی، یک روش قدرتمند برای پیش‌بینی اجزای بافت کریستالی بعد از نورد گرم معرفی شد. شبیه‌سازی نورد گرم در دو دمای 300 و 500 درجة سلسیوس، انجام و برای محاسبة پارامترهای سخت شدن در شبیه‌سازی پلاستیسیتة کریستالی، از پیچش گرم در دماهای مشابه با نورد گرم استفاده شد. چارچوب ارائه‌شده در این پژوهش، اجزای بافت کریستالی و شدت‌های مرتبط را با دقت پیش‌بینی می‌کند. این موضوع از مقایسة نتایج شبیه‌سازی با نتایج تجربی، نشان داده شد. این رویکرد همچنین منحنی‌های سیلان را به‌درستی و دقیق پیش‌بینی می‌کند. صحت این پیش‌بینی از مقایسة منحنی سیلان شبیه‌سازی‌شده با منحنی سیلان تجربی، ثابت شد. درنهایت، شبیه‌سازی، تأثیر شیب تغییر‌شکل را بر تکامل بافت کریستالی آشکار کرد و نشان داد که اجزای برشی که در اثر اصطکاک ایجاد می‌‌شوند، اجزای بافت کریستالی را در امتداد جهت ND نمونه می‌چرخانند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Simulation of Developed Texture During Warm Rolling of IF Steel

نویسنده [English]

  • Alireza Kolahi

Assistant Professor/Research Department of Nano-Technology and Advanced Materials, Materials and Energy Research Center, Meshkindasht, Alborz Province, Iran

چکیده [English]

Precise prediction of the texture component and simulation of the microstructure evolution facilitate the control and design of the final mechanical and physical properties. Through coupling the finite element simulation and crystal plasticity modelling, the current study introduced a robust technique for predicting the texture component after warm rolling. The simulation was then performed at two temperatures of 300 and 500oC for warm rolling. To calculate the appropriate hardening parameters for the crystal plasticity simulation, the experimental flow curves were obtained from torsion tests at the same temperatures of warm rolling. The presented framework predicted the texture components and associated intensities accurately. This was confirmed followed by comparing the results with the experimental ones. The proposed approach also predicted the flow curves correctly and precisely, as further proved by comparing the simulated flow curve based on the experimental flow curves.  Revealing the effect of deformation gradient on the texture evolution, the simulation also showed that the shear components imposed by friction rotated the texture components along the ND direction of the specimen.

کلیدواژه‌ها [English]

  • Texture
  • Simulation
  • Warm Rolling
  • Finite Element Method
  • Crystal Plasticity Modelling
  1. Barnett, M. R., & Jonas, J. J. (1997a). Influence of ferrite rolling temperature on grain size and texture in annealed low C and IF steels. ISIJ International, 37(7), 706-714. https://doi.org/10.2355/isijinternational.37.706
  2. Barnett, M. R., & Jonas, J. J. (1997b). Influence of ferrite rolling temperature on microstructure and texture in deformed low C and IF steels. ISIJ International, 37(7), 697-705. https://doi.org/10.2355/isijinternational.37.697
  3. Beyerlein, I. J., Lebensohn, R. A., & Tomé, C. N. (2003). Modeling texture and microstructural evolution in the equal channel angular extrusion process. Materials Science and Engineering: A, 345(1–2), 122-138. https://doi.org/10.1016/S0921-5093(02)00457-4
  4. Engler, O., & Randle, V. (2009). Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping, Second Edition. CRC press. https://doi.org/10.1201/9781420063660
  5. Esling, C., Bechler-Ferry, E., & Bunge, H. J. (1982). Three-dimensional texture analysis after Bunge and Roe: correspondence between the respective mathematical techniques. Texture, Stress, and Microstructure5(2), 95-125. https://doi.org/10.1155/TSM.5.95
  6. Haldar, A., & Ray, R. K. (2005). Microstructural and textural development in an extra low carbon steel during warm rolling. Materials Science and Engineering: A, 391(1–2), 402-407. https://doi.org/10.1016/j.msea.2004.09.014
  7. Hawkins, D. N., & Shuttleworth, A. A. (1979). The effect of warm rolling on the structure and properties of a low-carbon steel. Journal of Mechanical Working Technology, 2(4), 333-345. https://doi.org/10.1016/0378-3804(79)90002-0
  8. Hu, B., Tu, X., Luo, H., & Mao, X. (2020). Effect of warm rolling process on microstructures and tensile properties of 10 Mn steel. Journal of Materials Science and Technology, 47, 131-141. https://doi.org/10.1016/j.jmst.2019.12.026
  9. Kestens, L., & Jonas, J. J. (1997). Modelling texture change during the static recrystallization of a cold rolled and annealed ultra low carbon steel previously warm rolled in the ferrite region. ISIJ International, 37(8), 807-814. https://doi.org/10.2355/isijinternational.37.807.
  10. Khajezade, A., Parsa, M. H., & Mirzadeh, H. (2016). Crystal plasticity analysis of texture evolution of pure aluminum during processing by a new severe plastic deformation technique. Metallurgical and Materials Transactions A47, 941-948. https://doi.org/10.1007/s11661-015-3227-3
  11. Kocks, U. F., Tomé, C. N., & Wenk, H. R. (2000). Texture and anisotropy: preferred orientations in polycrystals and their effect on materials properties. Cambridge university press. https://books.google.com/books?hl=en&lr=&id=vkyU9KZBTioC&oi=fnd&pg=PR8&dq=11.%09Kocks,+U.+F.,+Tom%C3%A9,+C.+N.,+%26+Wenk,+H.+R.+(2000).+Texture+and+anisotropy:+preferred+orientations+in+polycrystals+and+their+effect+on+materials+properties.+Cambridge+university+press.+&ots=eProhBujz9&sig=c3H3VjMorzDOWCUws_vgnI_-b7k
  12. Kolahi, A., Akbarzadeh, A., & Barnett, M. R. (2009). Electron back scattered diffraction (EBSD) characterization of warm rolled and accumulative roll bonding (ARB) processed ferrite. Journal of Materials Processing Technology, 209(3), 1436-1444. https://doi.org/10.1016/j.jmatprotec.2008.03.064
  13. Korznikov, A. V., Safarov, I. M., Nazarov, A. A., & Valiev, R. Z. (1996). High strength state in low carbon steel with submicron fibrous structure. Materials Science and Engineering: A, 206(1), 39-44. https://doi.org/10.1016/0921-5093(95)09981-6
  14. Kowalczyk-Gajewska, K., Sztwiertnia, K., Kawałko, J., Wierzbanowski, K., Wronski, M., Frydrych, K., Stupkiewicz, S., & Petryk, H. (2015). Texture evolution in titanium on complex deformation paths: Experiment and modelling. Materials Science and Engineering: A, 637, 251-263. https://doi.org/10.1016/j.msea.2015.04.040
  15. Lebensohn, R. A., & Tomé, C. N. (1993). A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys. Acta Metallurgica Et Materialia, 41(9), 2611-2624. https://doi.org/10.1016/0956-7151(93)90130-K
  16. Li, S., Beyerlein, I. J., Necker, C. T., Alexander, D. J., & Bourke, M. (2004). Heterogeneity of deformation texture in equal channel angular extrusion of copper. Acta Materialia, 52(16), 4859-4875. https://doi.org/10.1016/j.actamat.2004.06.042
  17. Liu, D., Humphreys, A. O., Toroghinezhad, M. R., & Jonas, J. J. (2002). The deformation microstructure and recrystallization behavior of warm rolled steels. ISIJ International, 42(7), 751-759. https://doi.org/10.2355/isijinternational.42.751
  18. Narayanswamy, S., Reddy, S. R., Saha, R., & Bhattacharjee, P. P. (2019). Texture homogeneity and stability in severely warm-rolled and annealed ultrafine pearlite. Materials Science and Technology (United Kingdom), 35(4), 437-447. https://doi.org/10.1080/02670836.2019.1569746
  19. Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D. D., Bieler, T. R., & Raabe, D. (2010). Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications. Acta Materialia, 58(4), 1152-1211. https://doi.org/10.1016/j.actamat.2009.10.058
  20. Senuma, T., Yada, H., Shimizu, R., & Harase, J. (1990). Textures of low carbon and titanium bearing extra low carbon steel sheets hot rolled below their AR3 temperatures. Acta Metallurgica Et Materialia, 38(12), 2673-2681. https://doi.org/10.1016/0956-7151(90)90281-K
  21. Thakur, S. K., Das, A. K., & Jha, B. K. (2022). Effect of Warm Rolling Process Parameters on Microstructure and Mechanical Properties of Structural Steels. Transactions of the Indian Institute of Metals, 75(6), 1509-1524. https://doi.org/10.1007/s12666-021-02519-9
  22. Tomé, C. N., & Lebensohn, R. A. (2009). Manual for Code Visco-Plastic Self-Consistent (vpsc). Los Alamos National Laboratory, New Mexico, USA. https://public.lanl.gov/lebenso/VPSC7c_manual.pdf
  23. Van Houtte, P., Li, S., Seefeldt, M., & Delannay, L. (2005). Deformation texture prediction: From the Taylor model to the advanced Lamel model. International Journal of Plasticity, 21(3). 589-624. https://doi.org/10.1016/j.ijplas.2004.04.011
  24. Zebarjadi Sar, M., Barella, S., Gruttadauria, A., Mombelli, D., & Mapelli, C. (2018). Impact of warm rolling process parameters on crystallographic textures, microstructure and mechanical properties of low-carbon boron-bearing steels. Metals, 8(11), 927. https:/doi.org/10.3390/met8110927