نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 مدرس، دانشکدهٔ مهندسی هوافضا، دانشگاه علوم و فنون هوایی شهید ستاری، تهران، ایران

2 مدیرعامل، شرکت نوگرا سرام فناور، مرکز رشد پژوهشگاه مواد و انرژی، مشکین‌دشت، البرز، ایران

3 دانشکده مهندسی هوافضا، دانشگاه علوم و فنون هوایی شهید ستاری، تهران، تهران، ایران

10.30501/jamt.2024.417900.1289

چکیده

در این پژوهش از روش قالب‌گیری تزریقی با فشار پایین به‌عنوان یکی از روش‌های شکل‌دهی سرامیک‌های پیشرفته و با پیچیدگی بالا برای ساخت قطعات زیرکونیایی (اکسید زیرکونیوم) استفاده شد. بهینه‌سازی درصد حجمی بار جامد به ساخت قطعاتی بدون عیب کمک می‌کند. برای این کار در این پژوهش از دو مسیر بررسی رفتار جریان‌یابی و چسب‌زدایی خوراک‌های زیرکونیا برای انتخاب درصد بهینهٔ بار جامد استفاده شد. این بهینه‌سازی بین خوراک‌های حاوی ۵۲، ۵۳ و ۵۴ درصد حجمی بار جامد و در دماهای 70، 80 و 90 درجهٔ سلسیوس انجام شد. در این میان، خوراک حاوی ۵۴ درصد حجمی بار جامد دارای رفتار جریان‌یابی بهتر و حساسیت کمتر به برش و همچنین رفتار چسب‌زدایی بهتری از دو خوراک دیگر بوده و ساخت قطعهٔ بدون عیب ازطریق این خوراک میسر شد. بدنهٔ زینترشدهٔ زیرکونیایی دارای چگالی بالک ۵۰/۴ گرم بر سانتی‌متر مکعب و درصد تخلخل ظاهری ۵/۱۸ است. این قطعه با خواصی که دارد برای بوته‌های سرامیکی با کاربرد ذوب و ریخته‌گری سوپرآلیاژهای پایهٔ نیکل مناسب است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigating the Effect of Solid Load on The Process of Low-Pressure Injection Molding (LPIM) of Zirconia Parts

نویسندگان [English]

  • Jaber Mirzaei 1
  • Danial Ghafoori 2
  • Hamidreza Zarei 3

1 Instructor, Department of Aerospace Engineering, Shahid Sattari University of Aeronautical Sciences and Techniques, Tehran, Tehran, Iran.

2 Chief Executive Officer, Nogara Ceram Fanavar Company, Materials and Energy Research Institute growth center, Meshkin Dasht, Alborz, Iran.

3 Professor, Department of Aerospace Engineering, Shahid Sattari University of Aeronautical Sciences and Techniques, Tehran, Tehran, Iran.

چکیده [English]

In this article, Low-Pressure Injection Molding (LPIM) method was investigated as a method for forming zirconia (zirconium oxide) parts. It is one of the methods used for manufacturing engineering ceramics with complex shapes and high dimensional accuracy. In this method, a binder composition (paraffin waxe) is used as the plasticizing agent to shape zirconia particles. Optimizing the volume percentage of solid load helps to make parts without defects. For this purpose, in this research, two ways of investigating the behavior of flow behavior and debonding of zirconia feedstocks were used to select the optimal percentage of solid load. This optimization was done between feedstocks containing 52, 53, and 54 Vol% of solid load and at temperatures of 70, 80, and 90 °C. The feedstock containing 54% solid load has better flow behavior and less sensitivity to shear, as well as better debonding behavior than the other two feedstocks, and it was possible to make the part without defects through this feedstock.

کلیدواژه‌ها [English]

  • Low Pressure Injection Molding
  • Zirconia
  • Paraffin Wax
  • Debinding
  • Feedstock
  1. Ahn, S., Park, S. J., Lee, S., Atre, S. V., & German, R. M. (2009). Effect of powders and binders on material properties and molding parameters in iron and stainless steel powder injection molding process. Powder Technology, 193(2), 162-169. https://doi.org/10.1016/j.powtec.2009.03.010
  2. Bauer, W., & Knitter, R. (2002). Development of a Rapid Prototyping Process Chain for the Production of Ceramic Microcomponents. Journal of Materials Science, 37, 3127-3140. https://doi.org/10.1023/A:1016150126206
  3. Çetinel, F., Bauer, W., Knitter, R., & Haußelt, J. (2011). Factors affecting strength and shape retention of zirconia micro bending bars during thermal debinding. Ceramics International, 37(7), 2809-2820. https://doi.org/10.1016/j.ceramint.2011.04.076
  4. Çetinel, F. A., & Bauer, W. (2013). Ceramic micro parts. Part 1: How thermal debinding can be utilized to enhance surface finish and mechanical properties. Journal of the European Ceramic Society, 33(15), 3123-3134. https://doi.org/10.1016/j.jeurceramsoc.2013.06.022
  5. Çetinel, F. (2013). Ceramic micro parts, Part 2: Process-related factors influencing surface finish and shape retention during thermal debinding. Journal of the European Ceramic Society, 33, 3135-3144. https://doi.org/10.1016/j.jeurceramsoc.2013.06.019 Cheng, J., Wan, L., Cai, Y., Zhu, J., Song, P., & Dong, J. (2010). Fabrication of W–20wt.%Cu alloys by powder injection molding. Journal of Materials Processing Technology, 210(1), 137-142. https://doi.org/10.1016/j.jmatprotec.2009.08.001
  6. Foudzi, F. M., Muhamad, N., Sulong, A. B., & Zakaria, H. (2011). Flow Behavior Characteristic for Injection Process Using Nano-Yttria Stabilized Zirconia for Micro Metal Injection Molding (µMIM). Applied Mechanics and Materials, 44, 480-484. https://doi.org/10.4028/www.scientific.net/AMM.44-47.480
  7. German, R. M., & Bose, A. (1997). Injection molding of metals and ceramics. Powder Metallurgy, 42, 157-160. https://www.worldcat.org/title/injection-molding-of-metals-and-ceramics/oclc/301593484
  8. Gorjan, L., Dakskobler, A., & Kosmač, T. (2012). Strength Evolution of Injection‐Molded Ceramic Parts During Wick‐ Journal of the American Ceramic Society, 95(1), 188-193. https://doi.org/10.1111/j.1551-2916.2011.04872.x
  9. Gorjan, L., Kosmač, T., & Dakskobler, A. (2014). Single-step wick-debinding and sintering for powder injection molding. Ceramics International, 40, 887-891. https://doi.org/10.1016/j.ceramint.2013.06.083
  10. Hanemann, T., Hanemann, T., Heldele, R., Mueller, T., & Hausselt, J. (2011). Influence of Stearic Acid Concentration on the Processing of ZrO2 Containing Feedstocks Suitable for Micropowder Injection Molding. International Journal of Applied Ceramic Technology, 8(4), 865-872. https://doi.org/10.1111/j.1744-7402.2010.02519.x
  11. Jamaludin, K. R., Muhamad, N., Abolhasani, H., Murthadha, H., & Rahman, M. N. A. (2011). An Influence of a Binder System to the Rheological Behavior of the SS316L Metal Injection Molding (MIM) Feedstock. Advanced Materials Research, 264, 554-558. https://doi.org/10.4028/www.scientific.net/AMR.264-265.554
  12. Jiang, L., Guo, S., Bian, Y., Zhang, M., & Ding, W. (2016). Effect of sintering temperature on mechanical properties of magnesia partially stabilized zirconia refractory. Ceramics International, 42(9), 10593-10598. https://doi.org/10.1016/j.ceramint.2016.03.136
  13. Khakbiz, M., Simchi, A., & Bagheri, R. (2005). Investigation of rheological behaviour of 316L stainless steel–3 wt-%TiC powder injection moulding feedstock. Powder Metallurgy, 48(2), 144-150. https://doi.org/10.1179/003258905X37747
  14. Knitter, R., Bauer, W., Göhring, D., & Haußelt, J. (2001). Manufacturing of Ceramic Microcomponents by a Rapid Prototyping Process Chain. Advanced Engineering Materials, 3(1-2), 49-54. https://doi.org/10.1002/1527-2648(200101)3:1/2%3C49::AID-ADEM49%3E3.0.CO;2-H
  15. Krindges, I., Andreola, R., Perottoni, C. A., & Zorzi, J. E. (2008). Low-Pressure Injection Molding of Ceramic Springs. International Journal of Applied Ceramic Technology, 5(3), 243-248. https://doi.org/10.1111/j.1744-7402.2008.02226.x
  16. Leverkoehne, M., Coronel-Hernandez, J., Janssen, R., Claussen, N., Dirscherl, R., & Gorlov, I. (2001). Novel Binder System Based on Paraffin‐Wax for Low‐Pressure Injection Molding of Metall–Ceramic Powder Mixtures. Advanced Engineering Materials, 3, 995-998. http://dx.doi.org/10.1002/1527-2648(200112)3:12%3C995::AID-ADEM995%3E3.0.CO;2-D
  17. Li, Y., Li, L., & Khalil, K. A. (2007). Effect of powder loading on metal injection molding stainless steels. Journal of Materials Processing Technology, 183(2), 432-439. https://doi.org/10.1016/j.jmatprotec.2006.10.039
  18. Maca, K., Trunec, M., & Cihlar, J. (2002). Injection moulding and sintering of ceria ceramics. Ceramics International, 28(3), 337-344. https://doi.org/10.1016/S0272-8842(01)00100-6
  19. Mannschatz, A., Müller, A., & Moritz, T. (2011). Influence of powder morphology on properties of ceramic injection moulding feedstocks. Journal of the European Ceramic Society, 31(14), 2551-2558. https://doi.org/10.1016/j.jeurceramsoc.2011.01.013
  20. Merz, L., Rath, S., Piotter, V., Ruprecht, R., & Haußelt, J. (2003). Advanced Materials for Micro Powder Injection Molding. In Materials Science Forum (Vol. 426, pp. 4227-4232). Trans Tech Publications Ltd., Zurich-Uetikon, Switzerland. https://doi.org/10.4028/www.scientific.net/MSF.426-432.4227
  21. Nogueira, R. E. F. Q., Edirisinghe, M. J., & Gawne, D. T. (1992). Selection of a powder for ceramic injection moulding. Journal of Materials Science, 27(23), 6525-6531. https://doi.org/10.1007/BF00576307
  22. Paul Lin, S. T., & German, R. M. (1994). The influence of powder loading and binder additive on the properties of alumina injection-moulding blends. Journal of Materials Science, 29(20), 5367-5373. https://doi.org/10.1007/BF01171549
  23. Quevedo Nogueira, R. E. F., Bezerra, A. C., dos Santos, F. C., Sousa, M. R. D., & Acchar, W. (2001). Low-Pressure Injection Molding of Alumina Ceramics Using a Carnauba Wax Binder: Preliminary Results. Key Engineering Materials, 189, 67-72. https://doi.org/10.4028/www.scientific.net/KEM.189-191.67
  24. Rahaman, M. N. (2014). Ceramic Processing, in Kirk‐Othmer Encyclopedia of Chemical Technology. p. 1-98. https://doi.org/10.1201/9781315274126
  25. Roh, J. Y., Kwon, J., Lee, C. S., & Choi, J. S. (2011). Novel fabrication of pressure-less sintering of translucent powder injection molded (PIM) alumina blocks. Ceramics International, 37(1), 321-326. https://doi.org/10.1016/j.ceramint.2010.09.011
  26. Tafti, A. A., Demers, V., Majdi, S. M., Vachon, G., & Brailovski, V. (2021). Effect of Thermal Debinding Conditions on the Sintered Density of Low-Pressure Powder Injection Molded Iron Parts, 11(2), 264. https://doi.org/10.3390/met11020264
  27. Thomas-Vielma, P., Cervera, A., Levenfeld, B., & Várez, A. (2011). Production of alumina parts by powder injection molding with a binder system based on high density polyethylene. Journal of the European Ceramic Society, 28(4), 763-771. https://doi.org/10.1016/j.jeurceramsoc.2007.08.004
  28. Trunec, M., & Cihlář, J. (1997). Thermal debinding of injection moulded ceramics. Journal of the European Ceramic Society, 17(2), 203-209. https://doi.org/10.1016/S0955-2219(96)00108-2
  29. Wang, J., & Edirisinghe, M. J. (2016). Ceramic Injection Molding. http://dx.doi.org/10.1016/B978-0-12-803581-8.03574-8
  30. Witzleben, M. V., & Moritz, T. (2021). Ceramic Injection Molding, in Encyclopedia of Materials: Technical Ceramics and Glasses, M. Pomeroy, Editor., Elsevier: Oxford. p. 179-188. https://doi.org/10.1016/B978-0-12-818542-1.00072-2
  31. Yang, X., Jia, C., Xie, Z., Liu, W., & Liu, Q. (2012). Water‐Soluble Binder System Based on Poly‐Methyl Methacrylate and Poly‐Ethylene Glycol for Injection Molding of Large‐Sized Ceramic Parts. International Journal of Applied Ceramic Technology, 10(2), 339-347. https://doi.org/10.1111/j.1744-7402.2011.02745.x
  32. Yoon, S., Van Tyne, C. J. & Lee, H. (2014). Effect of alumina addition on the microstructure and grain boundary resistance of magnesia partially-stabilized zirconia. Current Applied Physics, 14(7), 922-927. https://doi.org/10.1016/j.cap.2014.04.010
  33. Zorzi, J., Perottoni, C., & Jornada, J. (2003). A new Partially Isostatic Method for Fast Debinding of low-Pressure Injection Molded Ceramic Parts. Materials Letters-MATER LETT, 57, 3784-3788. https://doi.org/10.1016/S0167-577X(03)00179-4