نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی برق، دانشگاه آزاد اسلامی، واحد تهران‌جنوب، تهران، ایران

2 دانشیار، دانشکده مهندسی برق، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

3 استادیار، گروه مهندسی برق، دانشگاه آزاد اسلامی، واحد تهران‌جنوب، تهران، ایران

چکیده

ذخیره‌سازهای انرژی در بسیاری از فنّاوری‌ها نظیر افزاره‌های پوشیدنی و قابل‌حمل، مورد توجه بسیار قرار گرفته ­اند. در این مطالعه نانوژنراتورهای هیبریدی پیزو/تریبوالکتریک با الکترودهایی از جنس آلومینیوم و مس مبتنی­بر کامپوزیت نانوساختارهای اکسید روی نهفته در پلی‌دی‌متیل‌سیلوکسان، ساخته شده‌اند. مطابق بررسی‌های ریخت­ شناسی، نانوصفحات اکسید روی به ­طور یکنواخت در جهت (103) روی بستر آلومینیوم رشد کرده‌اند؛ درمقابل، نانومیله‌های رشد­کرده بر بستر مس، یکنواخت نبوده و زاویه زیادی نسبت به سطح دارند. نتایج نشان می‌دهد نمونه‌ای که از لایه پلی‌دی‌متیل‌سیلوکسان (با سرعت لایه­ نشانی 1000 دور در دقیقه)، الکترودهای آلومینیوم و نانوصفحه اکسیدروی تشکیل شده است، بیشترین میزان ولتاژ و جریان را به‌ترتیب برابر با 120 ولت و 24 میکروآمپر، تولید می‌کند. نانوژنراتور ساخته ­شده با الکترودهایی از جنس مس و آلومینیوم همراه با نانوصفحه اکسیدروی، کمترین میزان ولتاژ، جریان و توان تولیدی را دارد. نانوژنراتور هیبریدی با دو الکترود آلومینیم و نانوصفحات اکسیدروی، بیشترین توان را که برابر با  Wm-297/0 است، تولید می‌کند. براساس نتایج به‌دست‌آمده از مشخصه‌یابی نانوژنراتورهای هیبریدی پیزو/تریبوالکتریکی ساخته‌شده، الکترودهای آلومینیومی که نانوصفحات اکسید روی نهفته در پلی‌دی‌متیل‌سیلوکسان را دارند، عملکرد بهتری را نشان می‌دهند و می‌توانند گزینه مناسبی برای برداشت انرژی مکانیکی برای دستگاه‌های خودشارژ باشند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Performance Investigation of Piezi/Triboelectric Hybrid Nanogenerator based on Zinc Oxide Composite: Copper and Aluminum Effect

نویسندگان [English]

  • Pouya Paydari 1
  • Negin Manavizadeh 2
  • َAlireza Hadi 3
  • Javad Karamdel 3

1 PhD Student, Department of Electrical Engineering, South Tehran Branch, Azad University, Tehran, Iran

2 Associate Professor, Faculty of Electrical Engineering, K. N. Toosi University, Tehran, Iran

3 Assistant Professor, Department of Electrical Engineering, South Tehran Branch, Azad University, Tehran, Iran

چکیده [English]

Energy harvester devices have garnered enormous attention in various technologies, such as wearing and portable devices. The current study aims to design and fabricate tribo/piezoelectric hybrid nanogenerators with electrodes made of Aluminum and Copper and Zinc Oxide nanostructures composite embedded in the PDMS. According to the morphology studies, Zinc Oxide nanosheets grew uniformly in the (103) crystal direction on the Aluminum substrate. In contrast, the nanorods that grew on the Copper substrate were disorderly with a large angle to the surface. The results indicate that the 1000 rpm deposition PDMS layer sample with Aluminum electrodes and Zinc Oxide nanosheets generated the highest voltage and current equal to 120 V and 24 µA, respectively. Both Copper and Aluminum electrodes coupled with ZnO nanosheets nanogenerator had the lowest voltage, current, and power generation. The hybrid nanogenerator with two aluminum electrodes and Zinc Oxide nanosheets generated the highest power equal to 0.97 Wm-2. According to the obtained results from the characterization of hybrid piezo/triboelectric nanogenerators, Aluminum electrodes with Zinc Oxide nanosheets embedded in PDMS exhibited better performance, hence a suitable option for harvesting mechanical energy for self-charging devices.

کلیدواژه‌ها [English]

  • Hybrid Nanogenerator
  • Piezoelectric Triboelectric
  • ZnO Nanostructure
  • PDMS Composite
  1. Afshari, F., Golshan Bafghi, Z., & Manavizadeh, N. (2022). Unsophisticated one-step synthesis super hydrophilic self-cleaning coating based on ZnO nanosheets. Applied Physics A, 128(1), 75. https://doi.org/https://doi.org/10.1007/s00339-021-05222-0
  2. Asna Ashary, M., & Hashemi, B. (2021). Fabrication of a Converter for Converting of Vibrational Energy to Electrical Energy Using Fe3O4 Ferrofluid. Journal of Advanced Materials and Technologies, 10(1), 65-74. https://doi.org/https://doi.org/10.30501/jamt.2021.178254.1019
  3. Azimi, S., Golabchi, A., Nekookar, A., Rabbani, S., Amiri, M. H., Asadi, K., & Abolhasani, M. M. (2021). Self-powered cardiac pacemaker by piezoelectric polymer nanogenerator implant. Nano Energy, 83, 105781. https://doi.org/https://doi.org/10.1016/j.nanoen.2021.105781
  4. Bafghi, Z. G., & Manavizadeh, N. (2020). Low power ZnO nanorod-based ultraviolet photodetector: effect of alcoholic growth precursor. Optics & Laser Technology, 129, 106310. https://doi.org/https://doi.org/10.1016/j.optlastec.2020.106310
  5. Chen, G., Li, Y., Bick, M., & Chen, J. (2020). Smart Textiles for Electricity Generation. Chem Rev, 120(8), 3668-3720. https://doi.org/10.1021/acs.chemrev.9b00821
  6. Cho, S., Yun, Y., Jang, S., Ra, Y., Choi, J. H., Hwang, H. J., Choi, D., & Choi, D. (2020). Universal biomechanical energy harvesting from joint movements using a direction-switchable triboelectric nanogenerator. Nano Energy, 71, 104584. https://doi.org/https://doi.org/10.1016/j.nanoen.2020.104584
  7. Chowdhury, A. R., Abdullah, A. M., Hussain, I., Lopez, J., Cantu, D., Gupta, S. K., Mao, Y., Danti, S., & Uddin, M. J. (2019). Lithium doped zinc oxide based flexible piezoelectric-triboelectric hybrid nanogenerator. Nano Energy, 61, 327-336. https://doi.org/https://doi.org/10.1016/j.nanoen.2019.04.085
  8. Deng, W., Zhou, Y., Libanori, A., Chen, G., Yang, W., & Chen, J. (2022). Piezoelectric nanogenerators for personalized healthcare. Chem Soc Rev, 51(9), 3380-3435. https://doi.org/10.1039/d1cs00858g
  9. Dong, K., Peng, X., & Wang, Z. L. (2020). Fiber/Fabric-Based Piezoelectric and Triboelectric Nanogenerators for Flexible/Stretchable and Wearable Electronics and Artificial Intelligence. Adv Mater, 32(5), e1902549. https://doi.org/10.1002/adma.201902549
  10. Duan, S., Wu, R., Xiong, Y.-H., Ren, H.-M., Lei, C., Zhao, Y.-Q., Zhang, X.-Y., & Xu, F.-J. (2022). Multifunctional antimicrobial materials: From rational design to biomedical applications. Progress in Materials Science, 125, 100887. https://doi.org/https://doi.org/10.1016/j.pmatsci.2021.100887
  11. Farajollahi, H., Bafghi, Z. G., Mohammadi, E., Manavizadeh, N., & Salehi, A. (2020). Sensitivity enhancement of AZO-based ethanol sensor decorated by Au nano-islands. Current Applied Physics, 20(8), 917-924. https://doi.org/https://doi.org/10.1016/j.cap.2020.05.007
  12. Hamid, H. M. A., & Çelik-Butler, Z. (2018). Characterization and performance analysis of Li-doped ZnO nanowire as a nano-sensor and nano-energy harvesting element. Nano Energy, 50, 159-168. https://doi.org/https://doi.org/10.1016/j.nanoen.2018.05.023
  13. Hao, N., Xu, Z., Nie, Y., Jin, C., Closson, A. B., Zhang, M., & Zhang, J. X. J. (2019). Microfluidics-enabled rational design of ZnO micro-/nanoparticles with enhanced photocatalysis, cytotoxicity, and piezoelectric properties. Chem Eng J, 378, 122222. https://doi.org/10.1016/j.cej.2019.122222
  14. He, J., Qian, S., Niu, X., Zhang, N., Qian, J., Hou, X., Mu, J., Geng, W., & Chou, X. (2019). Piezoelectric-enhanced triboelectric nanogenerator fabric for biomechanical energy harvesting. Nano Energy, 64, 103933. https://doi.org/https://doi.org/10.1016/j.nanoen.2019.103933
  15. Khatua, D. K., & Kim, S.-J. (2022). Perspective on the development of high performance flexible piezoelectric energy harvesters. Journal of Materials Chemistry C, 10(8), 2905-2924. https://doi.org/https://doi.org/10.1039/D1TC06089A
  16. Kim, D. H., Dudem, B., & Yu, J. S. (2018). High-performance flexible piezoelectric-assisted triboelectric hybrid nanogenerator via polydimethylsiloxane-encapsulated nanoflower-like ZnO composite films for scavenging energy from daily human activities. ACS Sustainable Chemistry & Engineering, 6(7), 8525-8535. https://doi.org/https://doi.org/10.1021/acssuschemeng.8b00834
  17. Kim, H., Pyun, K. R., Lee, M. T., Lee, H. B., & Ko, S. H. (2022). Recent advances in sustainable wearable energy devices with nanoscale materials and macroscale structures. Advanced Functional Materials, 32(16), 2110535. https://doi.org/https://doi.org/10.1002/adfm.202110535
  18. Kim, J.-N., Lee, J., Lee, H., & Oh, I.-K. (2021). Stretchable and self-healable catechol-chitosan-diatom hydrogel for triboelectric generator and self-powered tremor sensor targeting at Parkinson disease. Nano Energy, 82, 105705. https://doi.org/https://doi.org/10.1016/j.nanoen.2020.105705
  19. Kim, Y.-G., Song, J.-H., Hong, S., & Ahn, S.-H. (2022). Piezoelectric strain sensor with high sensitivity and high stretchability based on kirigami design cutting. npj Flexible Electronics, 6(1), 52. https://doi.org/https://doi.org/10.1038/s41528-022-00186-4
  20. Le, A. T., Ahmadipour, M., & Pung, S.-Y. (2020). A review on ZnO-based piezoelectric nanogenerators: Synthesis, characterization techniques, performance enhancement and applications. Journal of Alloys and Compounds, 844, 156172. https://doi.org/https://doi.org/10.1016/j.jallcom.2020.156172
  21. Lee, D. W., Jeong, D. G., Kim, J. H., Kim, H. S., Murillo, G., Lee, G.-H., Song, H.-C., & Jung, J. H. (2020). Polarization-controlled PVDF-based hybrid nanogenerator for an effective vibrational energy harvesting from human foot. Nano Energy, 76, 105066. https://doi.org/https://doi.org/10.1016/j.nanoen.2020.105066
  22. Libanori, A., Chen, G., Zhao, X., Zhou, Y., & Chen, J. (2022). Smart textiles for personalized healthcare. Nature Electronics, 5(3), 142-156. https://doi.org/https://doi.org/10.1038/s41928-022-00723-z
  23. Liu, L., Guo, X., & Lee, C. (2021). Promoting smart cities into the 5G era with multi-field Internet of Things (IoT) applications powered with advanced mechanical energy harvesters. Nano Energy, 88, 106304. https://doi.org/https://doi.org/10.1016/j.nanoen.2021.106304
  24. Luo, X., Zhu, L., Wang, Y. C., Li, J., Nie, J., & Wang, Z. L. (2021). A flexible multifunctional triboelectric nanogenerator based on MXene/PVA hydrogel. Advanced Functional Materials, 31(38), 2104928. https://doi.org/https://doi.org/10.1002/adfm.202104928
  25. Mariello, M. (2022). Recent Advances on hybrid piezo-triboelectric bio-nanogenerators: Materials, architectures and circuitry. Nanoenergy Advances, 2(1), 64-109. https://doi.org/https://doi.org/10.3390/nanoenergyadv2010004
  26. Olabi, A. G., & Abdelkareem, M. A. (2022). Renewable energy and climate change. Renewable and Sustainable Energy Reviews, 158, 112111. https://doi.org/https://doi.org/10.1016/j.rser.2022.112111
  27. Pan, L., Sun, S., Chen, Y., Wang, P., Wang, J., Zhang, X., Zou, J. J., & Wang, Z. L. (2020). Advances in piezo‐phototronic effect enhanced photocatalysis and photoelectrocatalysis. Advanced Energy Materials, 10(15), 2000214. https://doi.org/https://doi.org/10.1002/aenm.202000214
  28. Panda, S., Hajra, S., Mistewicz, K., In-na, P., Sahu, M., Rajaitha, P. M., & Kim, H. J. (2022). Piezoelectric energy harvesting systems for biomedical applications. Nano Energy, 107514. https://doi.org/https://doi.org/10.1016/j.nanoen.2022.107514
  29. Paydari, P., Manavizadeh, N., Hadi, A., & Karamdel, J. (2023). The morphology effect of embedded ZnO particles-based composite on flexible hybrid piezoelectric triboelectric nanogenerators for harvesting biomechanical energy. Journal of Sol-Gel Science and Technology, 105(2), 337-347. https://doi.org/https://doi.org/10.1007/s10971-022-06019-0
  30. Pusty, M., & Shirage, P. M. (2022). Insights and perspectives on graphene-PVDF based nanocomposite materials for harvesting mechanical energy. Journal of Alloys and Compounds, 164060. https://doi.org/https://doi.org/10.1016/j.jallcom.2022.164060
  31. Pyo, S., Lee, J., Bae, K., Sim, S., & Kim, J. (2021). Recent Progress in Flexible Tactile Sensors for Human-Interactive Systems: From Sensors to Advanced Applications. Adv Mater, 33(47), e2005902. https://doi.org/https://doi.org/10.1002/adma.202005902
  32. Rahimzadeh, M., Samadi, H., & Shams Mohammadi, N. (2023). Improving the Efficiency of a Cantilever Energy Scavenger. Journal of Renewable Energy and Environment, 10(1), 59-67. https://doi.org/https://doi.org/10.30501/jree.2022.320113.1300
  33. Rangel-Martinez, D., Nigam, K. D. P., & Ricardez-Sandoval, L. A. (2021). Machine learning on sustainable energy: A review and outlook on renewable energy systems, catalysis, smart grid and energy storage. Chemical Engineering Research and Design, 174, 414-441. https://doi.org/https://doi.org/10.1016/j.cherd.2021.08.013
  34. Rao, J., Chen, Z., Zhao, D., Yin, Y., Wang, X., & Yi, F. (2019). Recent Progress in Self-Powered Skin Sensors. Sensors (Basel), 19(12), 2763. https://doi.org/10.3390/s19122763
  35. Rezaie, S., Bafghi, Z. G., & Manavizadeh, N. (2020). Carbon-doped ZnO nanotube-based highly effective hydrogen gas sensor: a first-principles study. International Journal of Hydrogen Energy, 45(27), 14174-14182. https://doi.org/https://doi.org/10.1016/j.ijhydene.2020.03.050
  36. Rezaie, S., Bafghi, Z. G., Manavizadeh, N., & Kordmahale, S. B. (2021). Highly sensitive detection of dissolved gases in transformer oil with carbon-doped ZnO nanotube: A DFT study. IEEE Sensors Journal, 22(1), 82-89. https://doi.org/10.1109/JSEN.2021.3126654
  37. Sahatiya, P., Kannan, S., & Badhulika, S. (2018). Few layer MoS2 and in situ poled PVDF nanofibers on low cost paper substrate as high performance piezo-triboelectric hybrid nanogenerator: energy harvesting from handwriting and human touch. Applied Materials Today, 13, 91-99. https://doi.org/https://doi.org/10.1016/j.apmt.2018.08.009
  38. Sen, S., & Ganguly, S. (2017). Opportunities, barriers and issues with renewable energy development–A discussion. Renewable and Sustainable Energy Reviews, 69, 1170-1181. https://doi.org/https://doi.org/10.1016/j.rser.2016.09.137
  39. Shakthivel, D., Dahiya, A. S., Mukherjee, R., & Dahiya, R. (2021). Inorganic semiconducting nanowires for green energy solutions. Current Opinion in Chemical Engineering, 34, 100753. https://doi.org/https://doi.org/10.1016/j.coche.2021.100753
  40. Shi, K., Huang, X., Sun, B., Wu, Z., He, J., & Jiang, P. (2019). Cellulose/BaTiO3 aerogel paper based flexible piezoelectric nanogenerators and the electric coupling with triboelectricity. Nano Energy, 57, 450-458. https://doi.org/https://doi.org/10.1016/j.nanoen.2018.12.076
  41. Shi, Q., He, T., & Lee, C. (2019). More than energy harvesting–Combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro-/nano-systems. Nano Energy, 57, 851-871. https://doi.org/https://doi.org/10.1016/j.nanoen.2019.01.002
  42. Shi, X., Wei, Y., Yan, R., Hu, L., Zhi, J., Tang, B., Li, Y., Yao, Z., Shi, C., & Yu, H.-D. (2023). Leaf surface-microstructure inspired fabrication of fish gelatin-based triboelectric nanogenerator. Nano Energy, 109, 108231. https://doi.org/https://doi.org/10.1016/j.nanoen.2023.108231
  43. Shirmohammadli, V., Manavizadeh, N., & Bafghi, Z. G. (2019). Efficient Capture of Circulating Tumor Cells Using Patterned ZnO Nanorod Arrays. IEEE Sensors Journal, 20(2), 591-598. https://doi.org/10.1109/JSEN.2019.2943386
  44. Singh, H. H., Kumar, D., & Khare, N. (2021). A synchronous piezoelectric–triboelectric–electromagnetic hybrid generator for harvesting vibration energy. Sustainable Energy & Fuels, 5(1), 212-218. https://doi.org/https://doi.org/10.1039/D0SE01201G
  45. Tan, C., Dong, Z., Li, Y., Zhao, H., Huang, X., Zhou, Z., Jiang, J. W., Long, Y. Z., Jiang, P., Zhang, T. Y., & Sun, B. (2020). A high performance wearable strain sensor with advanced thermal management for motion monitoring. Nat Commun, 11(1), 3530. https://doi.org/10.1038/s41467-020-17301-6
  46. Tat, T., Libanori, A., Au, C., Yau, A., & Chen, J. (2021). Advances in triboelectric nanogenerators for biomedical sensing. Biosens Bioelectron, 171, 112714. https://doi.org/10.1016/j.bios.2020.112714
  47. Thi, V. H. T., & Lee, B.-K. (2017). Great improvement on tetracycline removal using ZnO rod-activated carbon fiber composite prepared with a facile microwave method. Journal of hazardous materials, 324, 329-339. https://doi.org/https://doi.org/10.1016/j.jhazmat.2016.10.066
  48. Tsai, S. Y., Chen, C. C., Huang, J.-M., Lai, Y.-S., Ku, C.-S., Lin, C.-M., & Ko, F.-H. (2021). Piezo-enhanced Thermoelectric Properties of Highly Preferred c-Axis ZnO Nanocrystal Films: Implications for Energy Harvesting. ACS Applied Nano Materials, 4(9), 9430-9439. https://doi.org/https://doi.org/10.1021/acsanm.1c01915
  49. Tu, S., Guo, Y., Zhang, Y., Hu, C., Zhang, T., Ma, T., & Huang, H. (2020). Piezocatalysis and piezo‐photocatalysis: catalysts classification and modification strategy, reaction mechanism, and practical application. Advanced Functional Materials, 30(48), 2005158. https://doi.org/https://doi.org/10.1002/adfm.202005158
  50. Vallem, V., Sargolzaeiaval, Y., Ozturk, M., Lai, Y. C., & Dickey, M. D. (2021). Energy Harvesting and Storage with Soft and Stretchable Materials. Adv Mater, 33(19), e2004832. https://doi.org/10.1002/adma.202004832
  51. Wang, H. L., Guo, Z. H., Zhu, G., Pu, X., & Wang, Z. L. (2021). Boosting the power and lowering the impedance of triboelectric nanogenerators through manipulating the permittivity for wearable energy harvesting. ACS nano, 15(4), 7513-7521. https://doi.org/https://doi.org/10.1021/acsnano.1c00914
  52. Wang, J., Jiang, Z., Sun, W., Xu, X., Han, Q., & Chu, F. (2022). Yoyo-ball inspired triboelectric nanogenerators for harvesting biomechanical energy. Applied Energy, 308, 118322. https://doi.org/https://doi.org/10.1016/j.apenergy.2021.118322
  53. Wang, J., Qian, S., Yu, J., Zhang, Q., Yuan, Z., Sang, S., Zhou, X., & Sun, L. (2019). Flexible and Wearable PDMS-Based Triboelectric Nanogenerator for Self-Powered Tactile Sensing. Nanomaterials (Basel), 9(9), 1304. https://doi.org/10.3390/nano9091304
  54. Wang, Y., Li, X., Jiang, G., Liu, W., & Zhu, C. (2013). Origin of (103) plane of ZnO films deposited by RF magnetron sputtering. Journal of Materials Science: Materials in Electronics, 24, 3764-3767. https://doi.org/https://doi.org/10.1007/s10854-013-1315-y
  55. Wang, Y., Yang, E., Chen, T., Wang, J., Hu, Z., Mi, J., Pan, X., & Xu, M. (2020). A novel humidity resisting and wind direction adapting flag-type triboelectric nanogenerator for wind energy harvesting and speed sensing. Nano Energy, 78, 105279. https://doi.org/https://doi.org/10.1016/j.nanoen.2020.105279
  56. Ye, C., Dong, K., An, J., Yi, J., Peng, X., Ning, C., & Wang, Z. L. (2021). A triboelectric–electromagnetic hybrid nanogenerator with broadband working range for wind energy harvesting and a self-powered wind speed sensor. ACS Energy Letters, 6(4), 1443-1452. https://doi.org/https://doi.org/10.1021/acsenergylett.1c00244
  57. Zaszczynska, A., Gradys, A., & Sajkiewicz, P. (2020). Progress in the Applications of Smart Piezoelectric Materials for Medical Devices. Polymers (Basel), 12(11), 2754. https://doi.org/10.3390/polym12112754
  58. Zhao, Z., Dai, Y., Dou, S. X., & Liang, J. (2021). Flexible nanogenerators for wearable electronic applications based on piezoelectric materials. Materials Today Energy, 20, 100690. https://doi.org/https://doi.org/10.1016/j.mtener.2021.100690
  59. Zhu, M., Yi, Z., Yang, B., & Lee, C. (2021). Making use of nanoenergy from human–Nanogenerator and self-powered sensor enabled sustainable wireless IoT sensory systems. Nano Today, 36, 101016. https://doi.org/https://doi.org/10.1016/j.nantod.2020.101016
  60. Zobaa, A. F., & Bansal, R. C. (2011). Handbook of renewable energy technology. World Scientific. https://doi.org/https://doi.org/10.1007/978-3-642-39487-4
  61. Zou, Y., Raveendran, V., & Chen, J. (2020). Wearable triboelectric nanogenerators for biomechanical energy harvesting. Nano Energy, 77, 105303. https://doi.org/https://doi.org/10.1007/978-3-642-39487-4