نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشجوی کارشناسی، دانشکده مهندسی پزشکی، دانشگاه صنعتی امیرکبیر (پلی‌تکنیک تهران)، تهران، ایران

2 استادیار، دانشکده مهندسی پزشکی، دانشگاه صنعتی امیرکبیر (پلی‌تکنیک تهران)، تهران، ایران

3 دانشجوی دکتری، دانشکده مهندسی پزشکی، دانشگاه صنعتی امیرکبیر (پلی‌تکنیک تهران)، تهران، ایران

چکیده

پوست مانعی برای ورود آلودگیها به بدن است. بنابراین، در صورت ایجاد زخم، لازم است به ترمیم سریع آن پرداخته شود. امروزه، متداولترین روش برای درمان زخم استفاده از زخمپوشهای مهندسی‌شده ‌است. این زخم‌پوش‌ها باید، با ارائه هدفمند و پیوسته ترکیبات مؤثر، باعث تسریع فرایند بهبود شوند. در پژوهش پیش‌رو، زخمپوش فیلمی برمبنای پلیمر زیستی زانتان حاوی نانوحامل نیوزومی برای رهایش موضعی عصاره جلبک اسپیرولینا تهیه شد. نانوحامل‌های نیوزومی حاوی عصاره اسپیرولینا با روش هیدراسیون فیلم نازک تهیه شدند. سپس، زخم‌پوش فیلمی، با ترکیبکردن یکنواخت زانتان، ماده نرم‌کننده گلیسیرین و نیوزوم‌های حاوی اسپیرولینا به دست آمد. برای بررسی ویژگی زخم‌پوش تهیه‌شده، آزمون‌های ارزیابی متفاوتی انجام شد. با توجه به بررسی‌های میکروسکوپ ‌الکترونی ‌روبشی، ریخت‌شناسی نیوزوم‌های کروی با میانگین اندازه حدود 200 نانومتر بود و درصد بارگذاری دارو درون نیوزوم‌ها 72 درصد به دست آمد. همچنین، 25 درصد دارو از ساختار فیلم حاوی نیوزوم طی 20 روز رهایش می‌یابد. به‌علاوه، زخم‌پوش حاوی نیوزوم طی 20 روز کاهش وزن 35 درصد را نشان می‌دهد. با انجام آزمون سمیت سلولی طی 24 ساعت مشخص شد که تا غلظت 200 میکروگرم/میلیلیتر از عصاره اسپیرولینا زنده‌مانی سلول‌ها در مقایسه با نمونه کنترل بالای 80 درصد است. درمجموع، نتایج این مطالعه نشان می‌دهد که حامل نیوزومی در ساختار فیلم زانتان می‌تواند به‌عنوان سامانه دارورسان موضعی مناسب برای درمان زخم استفاده شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Fabrication and Characterization of Xanthan Film Containing Spirulina Extract with Continues Release Capability for Use in Wound Healing

نویسندگان [English]

  • Afrouz Ghasemzadeh 1
  • Rana Imani 2
  • Tahura Ebrahimi 3

1 BSc Student, Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.

2 Assistant Professor, Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran. Tehran, Iran.

3 PhD Candidate, Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran. Iran

چکیده [English]

Today, the most common method for wound treatment is to use engineered wound dressings. In the present study, a film wound dressing based on xanthan biopolymer, containing niosomal nanocarrier, was prepared for the local release of spirulina algae extract. Niosomal nanocarriers containing the spirulina extract were prepared using thin film hydration method. Then, a film wound dressing was produced by uniformly combining xanthan, glycerol emollient, and niosomes containing spirulina. According to scanning electron microscopy, the morphology of the niosomes were spherical with an average size of about 200 nm, and the percentage of drug loading within the niosomes was 72%. Moreover, 25% of the drug was released from the structure of the film containing niosomes within 20 days. Additionally, the wound dressing containing niosomes exhibited a 35% weight loss within 20 days. Through cytotoxicity testing conducted within 24 hours, it was revealed that up to a concentration of 200 μg/ml of the spirulina drug, cell viability remained higher than 80% compared to the control sample. In summary, the results of this study indicate that the niosomal carrier within the xanthan film structure could serve as an effective local drug delivery system for wound treatment.

کلیدواژه‌ها [English]

  • Wound Dressing
  • Xanthan Gum
  • Spirulina Extract
  • Controlled Release
  • Niosome
  1. Abaee, A., & Madadlou, A. (2016). Niosome-loaded cold-set whey protein hydrogels. Food Chemistry, 196, 106–113. https://doi.org/10.1016/J.FOODCHEM.2015.09.037
  2. Ajji, Z., Othman, I., & Rosiak, J. M. (2005). Production of hydrogel wound dressings using gamma radiation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 229(3–4), 375–380. https://doi.org/10.1016/J.NIMB.2004.12.135
  3. Barbosa De Almeida, C., Catelam, K. T., Lopes Cornélio, M., Francisco, J., & Filho, L. (2010). Morphological and Structural Characteristics of Zein Biofilms with Added Xanthan Gum. Food Technology and Biotechnology, 48(1), 19–27. https://www.researchgate.net/publication/41764895
  4. Behyari, M., Imani, R., & Keshvari, H. (2021). Evaluation of Silk Fibroin Nanofibrous Dressing Incorporating Niosomal Propolis, for Potential Use in Wound Healing. Fibers and Polymers, 22(8), 2090–2101. https://doi.org/10.1007/S12221-021-0973-2/METRICS
  5. Bilanovic, D., Starosvetsky, J., & Armon, R. H. (2016). Preparation of biodegradable xanthan–glycerol hydrogel, foam, film, aerogel and xerogel at room temperature. Carbohydrate Polymers, 148, 243–250. https://doi.org/10.1016/J.CARBPOL.2016.04.058
  6. Brunchi, C. E., Bercea, M., Morariu, S., & Dascalu, M. (2016). Some properties of xanthan gum in aqueous solutions: effect of temperature and pH. Journal of Polymer Research, 23(7), 1–8. https://doi.org/10.1007/S10965-016-1015-4/METRICS
  7. Bueno, V. B., & Petri, D. F. S. (2014). Xanthan hydrogel films: Molecular conformation, charge density and protein carriers. Carbohydrate Polymers, 101(1), 897–904. https://doi.org/10.1016/J.CARBPOL.2013.10.039
  8. Choi, J. Il, Kim, M. S., Chun, G. Y., & Shin, H. S. (2017). Spirulina extract-impregnated alginate-PCL nanofiber wound dressing for skin regeneration. Biotechnology and Bioprocess Engineering, 22(6), 679–685. https://doi.org/10.1007/S12257-017-0329-3/METRICS
  9. de Morais Lima, M., Carneiro, L. C., Bianchini, D., Dias, A. R. G., Zavareze, E. D. R., Prentice, C., & Moreira, A. D. S. (2017). Structural, Thermal, Physical, Mechanical, and Barrier Properties of Chitosan Films with the Addition of Xanthan Gum. Journal of Food Science, 82(3), 698–705. https://doi.org/10.1111/1750-3841.13653
  10. Desmet, E., Van Gele, M., & Lambert, J. (2017). Topically applied lipid- and surfactant-based nanoparticles in the treatment of skin disorders. Expert Opinion on Drug Delivery, 14(1), 109–122. https://doi.org/10.1080/17425247.2016.1206073
  11. Dhivya, S., Padma, V. V., & Santhini, E. (2015). Wound dressings-A review. BioMedicine (Netherlands), 5(4), 24–28. https://doi.org/10.7603/S40681-015-0022-9/METRICS
  1. Frykberg, R. G., & Banks, J. (2015). Challenges in the Treatment of Chronic Wounds. Advances in Wound Care, 4(9), 560–582. https://doi.org/10.1089/WOUND.2015.0635/ASSET/IMAGES/LARGE/FIGURE4.JPEG
  2. García-Ochoa, F., Santos, V. E., Casas, J. A., & Gómez, E. (2000). Xanthan gum: production, recovery, and properties. Biotechnology Advances, 18(7), 549–579. https://doi.org/10.1016/S0734-9750(00)00050-1
  3. Ge, X., Wei, M., He, S., & Yuan, W. E. (2019). Advances of Non-Ionic Surfactant Vesicles (Niosomes) and Their Application in Drug Delivery. Pharmaceutics 11(2), 55. https://doi.org/10.3390/PHARMACEUTICS11020055
  4. Gunes, S., Tamburaci, S., Dalay, M. C., & Gurhan, I. D. (2017). In vitro evaluation of Spirulina platensis extract incorporated skin cream with its wound healing and antioxidant activities. Pharmaceutical Biology, 55(1), 1824–1832. https://doi.org/10.1080/13880209.2017.1331249
  5. Jung, S. M., Min, S. K., Lee, H. C., Kwon, Y. S., Jung, M. H., & Shin, H. S. (2016). Spirulina-PCL Nanofiber Wound Dressing to Improve Cutaneous Wound Healing by Enhancing Antioxidative Mechanism. Journal of Nanomaterials, 2016. https://doi.org/10.1155/2016/6135727
  6. Khoee, S., & Yaghoobian, M. (2017). Niosomes: a novel approach in modern drug delivery systems. Nanostructures for Drug Delivery, 207–237. https://doi.org/10.1016/B978-0-323-46143-6.00006-3
  7. Kokabi, M., Sirousazar, M., & Hassan, Z. M. (2007). PVA–clay nanocomposite hydrogels for wound dressing. European Polymer Journal, 43(3), 773–781. https://doi.org/10.1016/J.EURPOLYMJ.2006.11.030
  8. Laracuente, M. L., Yu, M. H., & McHugh, K. J. (2020). Zero-order drug delivery: State of the art and future prospects. Journal of Controlled Release, 327, 834–856. https://doi.org/10.1016/J.JCONREL.2020.09.020
  9. Malektaj, H., Imani, R., & Siadati, M. H. (2021). Study of injectable PNIPAAm hydrogels containing niosomal angiogenetic drug delivery system for potential cardiac tissue regeneration. Biomedical Materials, 16(4), 045031. https://doi.org/10.1088/1748-605X/ABDEF8
  10. Mitragotri, S. (2005). Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nature Reviews Drug Discovery 2005 4:3, 4(3), 255–260. https://doi.org/10.1038/nrd1662
  11. Nishinari, K., Yamatoya, K., Shirakawa, M., Phillips, G. O., & Williams, P. A. (2000). Handbook of hydrocolloids. Woodhead Publ, 247-267.
  12. Nour, S., Imani, R., & Sharifi, A. M. (2022). Angiogenic Effect of a Nanoniosomal Deferoxamine-Loaded Poly (vinyl alcohol)-Egg White Film as a Promising Wound Dressing. ACS Biomaterials Science and Engineering, 8(8), 3485–3497. https://doi.org/10.1021/ACSBIOMATERIALS.2C00046/SUPPL_FILE/AB2C00046_SI_001.PDF
  13. Nur, P., Syarina, A., Karthivashan, G., Abas, F., Arulselvan, P., & Fakurazi, S. (2015). Wound Healing Potential of Spirulina Platensis Extracts On Human Dermal Fibroblast Cells. EXCLI Journal, 14, 385–393. https://doi.org/10.17179/excli2014-697
  14. Pando, D., Matos, M., Gutiérrez, G., & Pazos, C. (2015). Formulation of resveratrol entrapped niosomes for topical use. Colloids and Surfaces B: Biointerfaces, 128, 398–404. https://doi.org/10.1016/J.COLSURFB.2015.02.037
  15. Patias, L. D., Maroneze, M. M., Siqueira, S. F., de Menezes, C. R., Zepka, L. Q., & Jacob-Lopes, E. (2018). Single-Cell Protein as a Source of Biologically Active Ingredients for the Formulation of Antiobesity Foods. Alternative and Replacement Foods, 17, 317–353. https://doi.org/10.1016/B978-0-12-811446-9.00011-3
  16. Rahman, S. A., Abdelmalak, N. S., Badawi, A., Elbayoumy, T., Sabry, N., & Ramly, A. E. (2015). Formulation of tretinoin-loaded topical proniosomes for treatment of acne: in-vitro characterization, skin irritation test and comparative clinical study. Drug Delivery, 22(6), 731–739. https://doi.org/10.3109/10717544.2014.896428
  17. Richmond, N. A., Lamel, S. A., Davidson, J. M., Martins-Green, M., Sen, C. K., Tomic-Canic, M., Vivas, A. C., Braun, L. R., & Kirsner, R. S. (2013). US–National Institutes of Health-funded research for cutaneous wounds in 2012. Wound Repair and Regeneration, 21(6), 789–792. https://doi.org/10.1111/WRR.12099
  18. Saghazadeh, S., Rinoldi, C., Schot, M., Kashaf, S. S., Sharifi, F., Jalilian, E., Nuutila, K., Giatsidis, G., Mostafalu, P., Derakhshandeh, H., Yue, K., Swieszkowski, W., Memic, A., Tamayol, A., & Khademhosseini, A. (2018). Drug delivery systems and materials for wound healing applications. Advanced Drug Delivery Reviews, 127, 138–166. https://doi.org/10.1016/J.ADDR.2018.04.008
  19. Sehgal, P. K., Sripriya, R., Senthilkumar, M., & Rajendran, S. (2019). Drug delivery dressings. Advanced Textiles for Wound Care, 261–288. https://doi.org/10.1016/B978-0-08-102192-7.00009-6
  20. Shalviri, A., Liu, Q., Abdekhodaie, M. J., & Wu, X. Y. (2010). Novel modified starch–xanthan gum hydrogels for controlled drug delivery: Synthesis and characterization. Carbohydrate Polymers, 79(4), 898–907. https://doi.org/10.1016/J.CARBPOL.2009.10.016
  21. Sharma, V., Anandhakumar, S., & Sasidharan, M. (2015). Self-degrading niosomes for encapsulation of hydrophilic and hydrophobic drugs: An efficient carrier for cancer multi-drug delivery. Materials Science and Engineering: C, 56, 393–400. https://doi.org/10.1016/J.MSEC.2015.06.049
  22. Shehata, T. M., Ibrahim, M. M., & Elsewedy, H. S. (2021). Curcumin Niosomes Prepared from Proniosomal Gels: In Vitro Skin Permeability, Kinetic and In Vivo Studies. Polymers, 13(5), 791. https://doi.org/10.3390/POLYM13050791
  23. Shemesh, M., & Zilberman, M. (2014). Structure–property effects of novel bioresorbable hybrid structures with controlled release of analgesic drugs for wound healing applications. Acta Biomaterialia, 10(3), 1380–1391. https://doi.org/10.1016/J.ACTBIO.2013.11.025
  24. Shinde, S., Lavale, S. A., & Nagare, K. (2018). ‘Spirulina’as an Additive for Better Nutrition. J. Curr. Microbiol. App. Sci, 7(5), 143-147. https://doi.org/10.20546/ijcmas.2018.705.018
  25. Swinehart, D. F. (1962). The Beer-Lambert Law. Journal of Chemical Education, 39(7), 333–335. https://doi.org/10.1021/ED039P333
  26. Vimala, K., Mohan, Y. M., Varaprasad, K., Redd, N. N., Ravindra, S., Naidu, N. S., & Raju, K. M. (2011). Fabrication of Curcumin Encapsulated Chitosan-PVA Silver Nanocomposite Films for Improved Antimicrobial Activity. Journal of Biomaterials and Nanobiotechnology, 02(01), 55–64. https://doi.org/10.4236/JBNB.2011.21008
  27. White, R. (2005). Evidence for atraumatic soft silicone wound dressing use. Wounds UK, 1(3), 104-109. dressings.org/Dressings/mepitel.
  28. Zannis, J., Angobaldo, J., Marks, M., Defranzo, A., David, L., Molnar, J., & Argenta, L. (2009). Comparison of fasciotomy wound closures using traditional dressing changes and the vacuum-assisted closure device. Annals of Plastic Surgery, 62(4), 407–409. https://doi.org/10.1097/SAP.0B013E3181881B29