نوع مقاله : مقاله کامل پژوهشی

نویسنده

دانشیار، گروه نیمه‌هادی‌ها، پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران

10.30501/jamt.2023.395053.1275

چکیده

نانومخروط‌های بورنیترید دارای خواص فیزیکی، شیمیایی و الکترونی متفاوتی در مقایسه با نانومخروط‌های کربنی هستند و این تفاوت به وجود سه نوع پیوند کووالانسی در نانومخروط‌های بورنیترید(N-B، B- Bو N-N) نسبت به یک نوع پیوند کووالانسی،C-C ، در نانومخروط‌های کربنی می‌باشد. از آنجا که خواص ساختاری نانو‌مخروط‌ها بستگی زیادی به زاویه راس مخروط دارد، ویژگی‌های الکترونی و ساختاری نانومخروط‌های بور‌نیترید در اندازه‌های مختلف(ارتفاع و زاویه راس) با استفاده از محاسبات نظریه تابعی چگالی مورد بحث قرار گرفته است. محاسبات برای نانومخروط‌های بور‌نیترید با ارتفاع مخروط 1 تا 5 آنگستروم برای زاویه راس 60 درجه ، 3 تا 7 آنگستروم برای زاویه راس 120 درجه و 4 تا 8 آنگستروم برای زاویه راس 180 و 240 درجه انجام شده است. در این کار همچنین چگالی حالت‌ها، پارامترهای کوانتومی، تجزیه‌و‌تحلیل مرتبه پیوند، طول پیوند، قطبش‌پذیری، قطبش‌پذیری آنیزوتروپی، ممان دوقطبی و فرکانس‌ها انجام شده‌است و با استفاده از نتایج، بهترین ساختار براساس ارتفاع و زاویه راس تخمین‌زده ‌شده است تا بتوان از آن در محاسبات بعدی استفاده کرد. امیداست که نتایج این طرح بتواند راه‌گشایی در کارهای تجربی و طراحی نانومخروط‌ها به منظور جذب گازها، داروها و غیره باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The effect of height and disclination angle of boron nitride nanocones on electronic and structural properties: DFT

نویسنده [English]

  • Fahimeh Shojaie

Associate Professor, Semiconductors Group, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran

چکیده [English]

Boron nitriCompared with carbon nanocones, Boron Nitride Nanocones (BNNCs) are characterized by different physical, chemical, and electronic properties. Since BNNCs are in three types of covalent bonds (B-N), B-B, and (N-N), carbon nanocones contain only C-C bonds. Given that the structural properties of nano cones depend on the disclination angle of the cone, the current study aims to discuss the electronic and structural properties of boron nitride nanocones in different sizes (height and disclination angle) using Density Functional Theory (DFT) calculations. To this end, the relevant calculations were done for boron nitride nanocones with the cone heights of 1 to 5 angstroms at the disclination angle of 60°, 3 to 7 angstroms at the disclination angle of 120°, and 4 to 8 angstroms at the disclination angles of 180 and 240°. In this work, the density of states, quantum parameters, analysis of bond order, bond length, polarizability, anisotropic polarization, dipole moment, atomic charges, and frequencies were calculated using the DFT. According to the results, the best structure was identified based on the height and disclination angles to be further used in the next calculations. It is hoped that the results of this project can be useful in expanding the experimental works and effective in the design of nanocones as well in order to absorb gases, drugs, etc nanocones. Because BNNCs have three types of covalent bonds (B-N), B-B and (N-N), but carbon nanocones only have C-C bonds. Since the structural properties of nano cones depend on the angle of the disclination of the cone, the electronic and structural properties of boron nitride nanocones in different sizes (height and disclination angle) have been discussed using density functional theory calculations. Calculations have been performed for boron nitride nanocones with cone heights of 1 to 5 angstroms for disclination angle of 60°, 3 to 7 angstroms for disclination angle of 120° and 4 to 8 angstroms for disclination angles of 180 and 240°. In this work, the density of states, quantum parameters, analysis of bond order, bond length, polarizability, anisotropic polarization, dipole moment, atomic charges and frequencies have been calculated using density functional theory. According to the results, the best structure has been estimated based on the height and disclination angles, so that it can be used in the next calculations. It is hoped that the results of this project can be useful in expanding the experimental works and also be effective in the design of nanocones in order to absorb gases, drugs, etc.

کلیدواژه‌ها [English]

  • Boron nitride nanocones
  • Density functional theory
  • Height and disclination angles
  • Density of states
  • Anisotropic polarization
Adisa, O. O., Cox, B. J., & Hill, J. M. (2011). Open carbon nanocones as candidates for gas storage. The Journal of Physical Chemistry C, 115(50), 24528-24533. https://doi.org/10.1021/jp2069094  
Arjmandi, M., Pourafshari Chenar, M., Peyravi, M., Jahanshahi, M., Arjmandi, A., & Shokuhi Rad, A. (2018). Interpreting the CO2 adsorption on functionalized organic group of IRMOF-1: A B3LYP DFT based study. International Journal of Engineering, 31(9), 1473-1479. https://www.ije.ir/article_73300.html      
Baei, M. T., Peyghan, A. A., & Bagheri, Z. (2013). Carbon nanocone as an ammonia sensor: DFT studies. Structural Chemistry, 24, 1099-1103. https://doi.org/10.1007/s11224-012-0139-314       
Becke, A. D. (1992). Density‐functional thermochemistry. I. The effect of the exchange‐only gradient correction. The Journal of Chemical Physics, 96(3), 2155-2160. https://doi.org/10.1063/1.464913        
Doroudi, Z., & Jalali Sarvestani, M. R. (2020). Boron nitride nanocone as an adsorbent and senor for Ampicillin: A Computational Study. Chemical Review and Letters, 3(3), 110-116. https://doi.org/10.22034/crl.2020.233274.1061              
Golberg, D., Bando, Y., Kurashima, K., & Sato, T. (2001). Synthesis and characterization of ropes made of BN multiwalled nanotubes. Scripta Materialia, 44(8-9), 1561-1565. https://doi.org/10.1016/S1359-6462(01)00724-2
Hsieh, J.-Y., Chen, C., Chen, J.-L., Chen, C.-I., & Hwang, C.-C. (2009). The nanoindentation of a copper substrate by single-walled carbon nanocone tips: a molecular dynamics study. Nanotechnology, 20(9), 095709. https://doi.org/10.1088/0957-4484/20/9/095709          
Ignaczak, A., & Gomes, J. N. (1996). Interaction of halide ions with copper: the DFT approach. Chemical Physics Letters, 257(5-6), 609-615. https://doi.org/10.1016/0009-2614(96)00603-3     
Kalantarian, M. M. (2019). Theoretical Evaluation of Behaviours and Properties of LiFePO4 as Li-ion Battery Cathode Material: a DFT Study. Journal of Advanced Materials and Technologies, 8(1), 45-53. https://doi.org/10.30501/jamt.2019.88927       
Krungleviciute, V., Calbi, M. M., Wagner, J. A., Migone, A. D., Yudasaka, M., & Iijima, S. (2008). Probing the structure of carbon nanohorn aggregates by adsorbing gases of different sizes. The Journal of Physical Chemistry C, 112(15), 5742-5746. https://doi.org/10.1021/jp710524q 
Liao, M.-L. (2012). A study on hydrogen adsorption behaviors of open-tip carbon nanocones. Journal of Nanoparticle Research, 14(4), 837. . https://doi.org/10.1007/s11051-012-0837-1           
Lijima, S., Ichihashi, T., & Ando, Y. (1992). Pentagons, heptagons and negative curvature in graphite microtubule growth. Nature, 356(6372), 776-778. https://doi.org/10.1038/356776a0
López, N., & Illas, F. (1998). Ab initio modeling of the metal− support interface: the interaction of Ni, Pd, and Pt on MgO (100). The Journal of Physical Chemistry B, 102(8), 1430-1436. https://doi.org/10.1021/jp972626q     
Lu, T., & Chen, F. (2012a). Atomic dipole moment corrected Hirshfeld population method. Journal of Theoretical and Computational Chemistry, 11(01), 163-183. https://doi.org/10.1142/S0219633612500113         
Lu, T., & Chen, F. (2012b). Multiwfn: A multifunctional wavefunction analyzer. Journal of computational chemistry, 33(5), 580-592. https://doi.org/10.1002/jcc.22885           
Machado, M., Mota, R., & Piquini, P. (2003). Electronic properties of BN nanocones under electric fields. Microelectronics journal, 34(5-8), 545-547. https://doi.org/10.1016/S0026-2692(03)00044-2
Majidi, R., & Tabrizi, K. G. (2010). Study of neon adsorption on carbon nanocones using molecular dynamics simulation. Physica B: Condensed Matter, 405(8), 2144-2148. https://doi.org/10.1016/j.physb.2010.01.122
Mayer, I. (1983). Charge, bond order and valence in the AB initio SCF theory. Chemical Physics Letters, 97(3), 270-274. https://doi.org/10.1016/0009-2614(83)80005-0
Mayer, I., & Salvador, P. (2004). Overlap populations, bond orders and valences for ‘fuzzy’atoms. Chemical Physics Letters, 383(3-4), 368-375. https://doi.org/10.1016/j.cplett.2003.11.048           
Mirzaei, M., Yousefi, M., & Meskinfam, M. (2012). Chemical shielding properties for BN, BP, AlN, and AlP nanocones: DFT studies. Superlattices and Microstructures, 51(6), 809-813. https://doi.org/10.1016/j.spmi.2012.03.028       
Saadh, M., Amin, A., Farhadiyan, S., Sadeghi, M., Shahrtash, S., Maaliw III, R., Hanaf, A. S., Kiasari, B. A., Da'i, M., & Mirzaei, M. (2023). Sensing functions of an iron-doped boron nitride nanocone towards acetaminophen and its thio/thiol analogs: A DFT outlook. Diamond and Related Materials, 133, 109749. https://doi.org/10.1016/j.diamond.2023.109749              
Sripirom, J., Noor, S., Köhler, U., & Schulte, A. (2011). Easily made and handled carbon nanocones for scanning tunneling microscopy and electroanalysis. Carbon, 49(7), 2402-2412. https://doi.org/10.1016/j.carbon.2011.02.007             
Yu, S.-S., & Zheng, W.-T. (2010). Effect of N/B doping on the electronic and field emission properties for carbon nanotubes, carbon nanocones, and graphene nanoribbons. Nanoscale, 2(7), 1069-1082. https://doi.org/10.1039/C0NR00002G 
Zhi, C., Bando, Y., Tang, C., & Golberg, D. (2005). Electronic structure of boron nitride cone-shaped nanostructures. Physical Review B, 72(24), 245419. https://doi.org/10.1103/PhysRevB.72.245419