نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 کارشناسی ارشد، پژوهشکده سرامیک، پژوهشگاه مواد و انرژی، کرج، البرز، ایران

2 دانشیار، پژوهشکده سرامیک، پژوهشگاه مواد و انرژی، کرج، البرز، ایران

10.30501/jamt.2023.395051.1274

چکیده

وجود ویژگی­ های مهمی نظیر استحکام مناسب، ثابت دی­ الکتریک پایین، تانژانت تلفات کم و مقاومت در برابر سایش و شوک حرارتی در نیتریدسیلیسیم (Si3N4) باعث شده تا این سرامیک، یکی از معدود سرامیک­ های مناسب برای کاربرد در محافظ آنتن ­ها باشد. باتوجه‌به دشواری سینتر کردن پودر Si3N4، در این پژوهش ساخت این ماده به روش نیتریده کردن پودر سیلیسیم فشرده‌شده به­ روش پرس و بدون استفاده از افزودنی­ ها بررسی شد؛ زیرا تأثیر افزودنی­ها بر افت خواص اثبات شده است. دراین‌راستا، پودر سیلیسیم به­ همراه 0، 5/0، 7/0 و 1 درصد وزنی اکسیدآهن به­ روش پرس، شکل­ دهی و در فشار گاز نیتروژن 200، 400 و 600 میلی­ بار تحت دمای 1420 درجه سلسیوس به­ مدت 2 ساعت نیتریده شد. چگالی، تخلخل، ترکیب فاز و ریزساختار نمونه ­ها بررسی شد و نتایج آنالیزها نشان داد که حداقل فشار بهینه برای نیتریده کردن، 600 میلی­بار و بهینه درصد اکسیدآهن، 5/0 درصد وزنی می­ باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The Effect of Gas Pressure on the Nitridation of Silicon Bodies

نویسندگان [English]

  • Mehdi Okhovat Ghahfarokhi 1
  • Hudsa Majidian 2
  • Mohammad Zakeri 2

1 MSc, Department of Ceramic, Materials and Energy Research Center, Karaj, Alborz, Iran

2 Associate Professor, Department of Ceramic, Materials and Energy Research Center, Karaj, Alborz, Iran

چکیده [English]

: The important characteristics of silicon nitride (Si3N4) such as proper strength, low dielectric constant, low loss tangent, and high wear and thermal shock resistance have facilitated its widespread application in antenna protection. Due to the difficulties in sintering the Si3N4 samples, fabrication of this body in this research was investigated by nitridating a pressed silicon powder without using any additive since the effect of such additives on the loss of properties has been already proven. In this regard, silicon powder along with 0, 0.5, 0.7, and 1 wt.% of iron oxide were pressed and then nitridated at the temperature of 1420°C for two hours under the different nitrogen gas pressures of 200, 400, and 600 millibars. The density, porosity, phase composition, and microstructure of the samples were finally evaluated. The results showed that the minimum pressure for nitridation and optimal percentage of iron oxide were 600 millibars and 0.5 wt.%, respectively.

کلیدواژه‌ها [English]

  • Silicon Nitride
  • Nitridation
  • Gas Pressure
  • Phase Analysis
  1. Nikonam-Mofrad, R., Pugh, M.D., Drew, R.A.L., “A comparative study on nitridation mechanism and microstructural development of porous reaction bonded silicon nitride in the presence of CaO, MgO and Al2O3”, Journal of Asian Ceramic Societies, Vol. 8, No. 3, (2020), 873–890. https://doi.org/10.1080/21870764.2020.1793471
  2. Shahmohamadi, E., Mirhabibi, A., Golestanifard, F., “Modeling of Temperature Dependency of Silicon Nitride Formation’s Ki - netics during Reaction Bonded Method”, Iranian Journal of Materials Science & Engineering, Vol. 16, No. 3, (2019), 52-66. doi: 10.22068/ijmse.16.2.52
  3. Lan, Y., Li, X., Luo, J., Zhou, L., Wei, X., Yin, C., “Direct Nitridation Synthesis of Quasi-Spherical β-Si3N4 Powders with CaF2 Additive”, Materials, Vol. 12, No. 18, (2019), 2870. doi:10.3390/ma12182870
  4. Kaloyeros, A.E., Pan, Y., Goff, J., Arkles, B., “Review—Silicon Nitride and Silicon Nitride-Rich Thin Film Technologies: State-of-the-Art Processing Technologies, Properties, and Applications”, ECS Journal of Solid State Science and Technology, Vol. 9, No. 6, (2020), 063006. doi:1149/2162-8777/aba447
  5. Yu, C.H., Chiu, K.A., Do, T.H., Chang, L., “Oriented Si3N4 crystallites formed by plasma nitriding of SiO2/Si (111) substrate”, Surface & Coatings Technology, Vol. 395, (2020), 125877. https://doi.org/10.1016/j.surfcoat.2020.125877
  6. Boberski, C., Hamminger, R., Peuckert, P., Aldinger, F., Dillinger, R., Heinrich, J., Huber,, “High‐Performance Silicon Nitride Materials”, Advanced Materials, Vol. 1, No. 11, (1989), 378–387. https://doi.org/10.1002/adma.19890011104
  7. Silicon Nitride (Si3N4) Properties and Applications, (2001). Available at: https://www.azom.com/article.aspx?ArticleID=53
  8. Hampshire, S., “Silicon Nitride Ceramics - Review of Structure, Processing and Properties”, Journal of Achievements in Materials and Manufacturing Engineering, Vol. 24, No. 1, (2007), 43–50.
  9. Riley, F.L., “Silicon Nitridation”, In Riley, F.L. (ef.) Progress in Nitrogen Ceramics, Springer Dordrecht, (1983), 121–133. https://doi.org/10.1007/978-94-009-6851-6
  10. Du, X., Lee, S.S., Blugan, G., Ferguson, S.J., “Silicon Nitride as a Biomedical Material: An Overview”, International Journal of Molecular Sciences, Vol. 23, No. 12, (2022), 6551. https://doi.org/10.3390/ijms23126551
  11. Zheng, X., Wu, G., Sergeev, D., Wang, L., “Kinetics of Silicon Nitridation and the Formation Mechanism of α/β-Si3N4 at Atmospheric Pressure and 1410°C”, Industrial and Engineering Chemical Research, Vol. 61, No. 28, (2022), 10024−10033. https://doi.org/10.1021/acs.iecr.2c01283
  12. Greskovich, C., Rosolwski, J.H., “Sintering of Covalent Solids”, Journal of the American Ceramic Society, Vol. 59, No. 7–8, (1976), 336–343. https://doi.org/10.1111/j.1151-2916.1976.tb10979.x
  13. Greil, P., “Processing of Silicon Nitride Ceramics”, Materials Science and Engineering: A, Vol. 109, (1989), 27–35. https://doi.org/10.1016/0921-5093(89)90561-3
  14. Hsieh, M.Y., “Low Dielectric Loss Silicon Nitride Based Material”, S. Patent 4654315A, (1987). Available at: https://patents.google.com/patent/US4654315A/en
  15. Saxena, P., Slip Casting of Silicon Nitride, Master Thesis, MeGIlI University, (1992).
  16. Harris, J.N., “An Investigation of Reaction Sintered Silicon Nitride as a Hypersonic Radome Material”, Technical Report A-1585, (2012), http://hdl.handle.net/1853/45084
  17. Riley, F.L., “Silicon Nitride and Related Materials”, Journal of the American Ceramic Society, Vol. 83, No. 2, (2000), 245–265. https://doi.org/10.1111/j.1151-2916.2000.tb01182.x
  18. Torti, M.L., “The Silicon Nitride and Sialon Families of Structural Ceramics”, In Treatise on Materials Science & Technology, Vol. 29, (1989), 161–194. https://doi.org/10.1016/B978-0-12-341829-6.50009-8
  19. Moulson, A.J., “Reaction-Bonded Silicon Nitride: Its Formation and Properties”, Journal of Materials Science, Vol. 14, No. 5., (1979), 1017–1051. https://doi.org/10.1007/BF00561287
  20. Hasegawa, Y., Inomata, Y., Ki, K., Matsuyama, T., “Effects of Fe2O3 Addition on the Nitridation of Silicon Powder”, NASA Technical Reports Server (NTRS) 19780003253, (1977). Available at: https://ntrs.nasa.gov/citations/19780003253
  21. Evans, J.R.G., Moulson, A.J., “The Effect of Impurities on the Densification of Reaction-Bonded Silicon Nitride (RBSN)”, Journal of Materials Science, 18, No. 12, (1983), 3721– 3728. https://doi.org/10.1007/BF00540745
  22. Boyer, S.M., Moulson, A.J., “A Mechanism for the Nitridation of Fe-Contaminated Silicon”, Journal of Materials Science, Vol. 13, No. 8, (1978) 1637–1646. https://doi.org/10.1007/BF00548727
  23. Yao, G., Li, Y., Jiang, P., Jin, X., Long, M., Qin, H., Kumar, R.V., “Formation Mechanisms of Si3N4 and Si2N2O in Silicon Powder Nitridation”, Solid State Sciences, Vol. 66, (2017), 50–56. https://doi.org/10.1016/j.solidstatesciences.2017.03.002
  24. Long, M., Li, Y., Qin, H., Xue, W., Chen, J., Sun, J., Kumar, R.V., “Formation Mechanism of Si3N4 in Reaction-Bonded Si3N4-SiC Composites”, Ceramics International, Vol. 42, No. 15, (2016), 16448–16452. https://doi.org/10.1016/j.ceramint.2016.05.118
  25. Harald, O., Silicon for Silicon Nitride Based Products, Master Thesis, Norwegian University of Science and Technology, (2013). http://hdl.handle.net/11250/2353912
  26. Jennings, H.M., Richman, M.H., “Structure, Formation Mechanisms and Kinetics of Reaction-Bonded Silicon Nitride”, Journal of Materials Science, Vol. 11, No. 11, (1976), 2087–2098. https://doi.org/10.1007/PL00020337
  27. Jennings, H.M., “Review: On Reactions Between Silicon and Nitrogen - Part 1 Mechanisms”, Journal of Materials Science, Vol. 18, No. 4, (1983), 951–967. https://doi.org/10.1007/BF00551961
  28. Ziegler, G., Heinrich, J., Wötting, G., “Relationships Between Processing, Microstructure and Properties of Dense and Reaction-Bonded Silicon Nitride”, Journal of Materials Science, Vol. 22, No. 9, (1987), 3041–3086. https://doi.org/10.1007/BF01161167
  29. Yuan, B., Wang, G., “Preparation and Properties of Si3N4/BN Ceramic Composites”, Procedia Engineering, Vol. 27, (2012), 1292–1298. https://doi.org/10.1016/j.proeng.2011.12.584
  30. Gauthier, M.M., Densification and Sintering of Ceramics, In Engineered Materials Handbook Desk Edition, ASM International, (1995), 784–822. https://doi.org/10.31399/asm.hb.emde.a0003054
  31. Pigeon, R.G., Varma, A., Miller, A.E., “Some Factors Influencing the Formation of Reaction-Bonded Silicon Nitride”, Journal of Materials Science, Vol. 28, No. 7, (1993), 1919–1936. https://doi.org/10.1007/BF00595765
  32. Danforth, S.C., Jennings, H.M., Richman, M.H., “The Influence of Microstructure on the Strength of Reaction Bonded Silicon Nitride (RBSN)”, Acta Metallurgica, Vol. 27, No. 1, (1979), 123–130. https://doi.org/10.1016/0001-6160(79)90063-4