نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 کارشناسی ارشد، پژوهشکده سرامیک، پژوهشگاه مواد و انرژی، کرج، ایران

2 دانشیار، پژوهشکده سرامیک، پژوهشگاه مواد و انرژی، کرج، ایران

چکیده

وجود ویژگی­های مهمی نظیر استحکام مناسب، ثابت دی­الکتریک پایین، تانژانت تلفات کم و مقاومت در برابر سایش و شوک حرارتی در نیتریدسیلیسیم (Si3N4) باعث شده تا این سرامیک، یکی از معدود سرامیک­های مناسب برای کاربرد در محافظ آنتن­ ها باشد. با توجه به دشواری سینتر کردن پودر Si3N4، در این پژوهش ساخت این ماده به روش نیتریده کردن پودر سیلیسیم فشرده شده به روش پرس و بدون استفاده از افزودنی­ ها بررسی شد؛ زیرا تاثیر افزودنی­ ها بر افت خواص اثبات شده است. در این راستا، پودر سیلیسیم به همراه 0، 5/0، 7/0 و 1 درصد وزنی اکسیدآهن به روش پرس، شکل ­دهی و در فشار گاز نیتروژن 200، 400، و 600 میلی­ بار تحت دمای 1420 درجه سلسیوس به مدت 2 ساعت نیتریده شد. چگالی، تخلخل، ترکیب فاز و ریزساختار نمونه­ ها بررسی شد. نتایج آنالیزها نشان داد که حداقل فشار بهینه برای نیتریده کردن 600 میلی­بار و بهینه درصد اکسیدآهن، 5/0 درصد وزنی می­ باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The Effect of Gas Pressure on the Nitridation of Silicon Bodies

نویسندگان [English]

  • Mehdi Okhovat Ghahfarokhi 1
  • Hudsa Majidian 2
  • Mohammad Zakeri 2

1 M.S., Department of Ceramic, Materials and Energy Research Center, Karaj, Iran

2 Associate Professor, Department of Ceramic, Materials and Energy Research Center, Karaj, Iran

چکیده [English]

The important features of silicon nitride (Si3N4) such as proper strength, low dielectric constant, low loss tangent and high wear and thermal shock resistance have made this ceramic as one of the few suitable ceramics for use in antenna protection. Due to the difficulties in the sintering of Si3N4 samples, in this research, the fabrication of this body was investigated by nitridating a pressed silicon powder without using any additive; because the effect of additives on the loss of properties has been proven. In this regard, silicon powder along with 0, 0.5, 0.7, and 1 wt.% of iron oxide were pressed, and nitridated at the temperature of 1420 degree celsius for 2 hours under the different nitrogen gas pressures of 200, 400, and 600 millibars. The density, porosity, phase composition, and microstructure of the samples were evaluated. Results showed that the minimum pressure for nitridation is 600 millibars and the optimal percentage of iron oxide is 0.5 wt.%.

کلیدواژه‌ها [English]

  • Silicon Nitride
  • Nitridation
  • Gas Pressure
  • Phase Analysis
  1. Boberski, C., Hamminger, R., Peuckert, P., Aldinger, F., Dillinger, R., Heinrich, J., & Huber, J. (1989). High‐performance Silicon nitride materials. Advanced Materials, 1(11), 378-387. https://doi.org.10.1002/adma.19890011104
  2. Boyer, S. M., & Moulson, A. J. (1978). A mechanism for the nitridation of Fe-contaminated silicon. Journal of Materials Science, 13, 1637-1646. https://doi.org.10.1007/BF00548727
  3. Danforth, S. C., Jennings, H. M., & Richman, M. H. (1979). The influence of microstructure on the strength of reaction bonded silicon nitride (RBSN). Acta Metallurgica, 27(1), 123-130. https://doi.org.10.1016/0001-6160(79)90063-4
  4. Du, X., Lee, S. S., Blugan, G., & Ferguson, S. J. (2022). Silicon nitride as a biomedical material: An overview. International Journal of Molecular Sciences, 23(12), 6551. https://doi.org/10.3390/ijms23126551
  5. Evans, J. R. G., & Moulson, A. J. (1983). The effect of impurities on the densification of reaction-bonded silicon nitride (RBSN). Journal of Materials Science, 18, 3721-3728. https://doi.org/10.1007/BF00540745
  6. Greil, P. (1989). Processing of silicon nitride ceramics. Materials Science and Engineering: A, 109, 27-35. https://doi.org.10.1016/0921-5093(89)90561-3
  7. Hasegawa, Y., Inomata, Y., Kijima, K., & Matsuyama, T. (1977). Effects of Fe2O3 addition on the nitridation of silicon powder (No. NASA-TM-75129). https://ntrs.nasa.gov/citations/19780003253
  8. Jennings, H. M., & Richman, M. H. (1976). Structure, formation mechanisms and kinetics of reaction-bonded silicon nitride. Journal of Materials Science, 11, 2087-2098. https://doi.org/10.1007/PL00020337
  9. Kaloyeros, A. E., Pan, Y., Goff, J., & Arkles, B. (2020). Silicon nitride and silicon nitride-rich thin film technologies: state-of-the-art processing technologies, properties, and applications. ECS Journal of Solid-State Science and Technology, 9(6), 063006. https://doi.org.10.1149/2162-8777/aba447
  10. Lan, Y., Li, X., Luo, J., Zhou, L., Wei, X., & Yin, C. (2019). Direct nitridation synthesis of quasi-spherical β-Si3N4 powders with CaF2 Materials, 12(18), 2870. https://doi.org.10.3390/ma12182870
  11. Long, M., Li, Y., Qin, H., Xue, W., Chen, J., Sun, J., & Kumar, R. V. (2016). Formation mechanism of Si3N4 in reaction-bonded Si3N4-SiC composites. Ceramics International, 42(15), 16448-16452. https://doi.org.10.1016/j.ceramint.2016.05.118
  12. Moulson, A. J. (1979). Reaction-bonded silicon nitride: its formation and properties. Journal of Materials Science, 14, 1017-1051. https://doi.org/10.1007/BF00561287
  13. Nikonam-Mofrad, R., Pugh, M. D., & Drew, R. A. (2020). A comparative study on nitridation mechanism and microstructural development of porous reaction bonded silicon nitride in the presence of CaO, MgO and Al2O3. Journal of Asian Ceramic Societies, 8(3), 873-890. https://doi.org/10.1080/21870764.2020.1793471
  14. Ovregård, H. (2013). Silicon for silicon nitride based products (Master's thesis, Institutt for materialteknologi). http://hdl.handle.net/11250/2353912
  15. Pigeon, R. G., Varma, A., & Miller, A. E. (1993). Some factors influencing the formation of reaction-bonded silicon nitride. Journal of materials science, 28, 1919-1936. https://doi.org/10.1007/BF00595765
  16. Riley, F. L. (2000). Silicon nitride and related materials. Journal of the American Ceramic Society, 83(2), 245-265. https://doi.org.10.1111/j.1151-2916.2000.tb01182.x
  17. Saxena, P. (1992). Slip casting of silicon nitride. http://hdl.handle.net/1853/45084
  18. Shahmohamadi, E., Mirhabibi, A., & Golestanifard, F. (2019). Modeling of Temperature Dependency of Silicon Nitride Formation’s Ki-netics during Reaction Bonded Method. Iranian Journal of Materials Science & Engineering, 16(3). https://doi.org.10.22068/ijmse.16.2.52
  19. TORTI, M. L. (1989). The silicon nitride and sialon families of structural ceramics. In Treatise on Materials Science & Technology (Vol. 29, pp. 161-194). Elsevier. https://doi.org.10.1016/B978-0-12-341829-6.50009-8
  20. Yao, G., Li, Y., Jiang, P., Jin, X., Long, M., Qin, H., & Kumar, R. V. (2017). Formation mechanisms of Si3N4 and Si2N2O in silicon powder nitridation. Solid State Sciences, 66, 50-56. https://doi.org.10.1016/j.solidstatesciences.2017.03.002
  21. Yu, C. H., Chiu, K. A., Do, T. H., & Chang, L. (2020). Oriented Si3N4 crystallites formed by plasma nitriding of SiO2/Si (111) substrate. Surface and Coatings Technology, 395, 125877. https://doi.org/10.1016/j.surfcoat.2020.125877
  22. Yuan, B., & Wang, G. (2012). Preparation and properties of Si3N4/BN ceramic composites. Procedia Engineering, 27, 1292-1298. https://doi.org.10.1016/j.proeng.2011.12.584
  23. Zheng, X., Wu, G., Sergeev, D., & Wang, L. (2022). Kinetics of Silicon Nitridation and the Formation Mechanism of α/β-Si3N4 at Atmospheric Pressure and 1410° C. Industrial & Engineering Chemistry Research, 61(28), 10024-10033. https://doi.org/10.1021/acs.iecr.2c01283