نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 کارشناسی ارشد، دانشکده مهندسی معدن و متالورژی، دانشگاه یزد، یزد، یزد، ایران

2 دانشیار، دانشکده مهندسی معدن و متالورژی، دانشگاه یزد، یزد، یزد، ایران

چکیده

در طی سال‌های اخیر، توجه بسیاری از پژوهشگران به نانوذرات فریت کبالت به‌منزله یک ماده مغناطیسی پرکاربرد در ساخت تجهیزات الکترونیکی، مغناطیسی و پزشکی جلب شده است. بر این اساس، در پژوهش حاضر نیز، فرایند تولید این نانوذرات با استفاده از روش سل - ژل در حضور عسل بررسی شد. به این منظور، نمونه‌هایی در حضور 0، 5/0، 1، 5/1، 2 و 5/2 گرم عسل تولید شدند. به‌منظور ارزیابی خواص ساختاری، ریزساختاری و مغناطیسی نانوذرات تولیدشده، آزمون‌های پراش پرتو ایکس (XRD)، آنالیز حرارتی افتراقی (DTA) و وزن‌سنجی حرارتی (TG)، میکروسکوپ الکترونی روبشی نشر میدانی (FESEM) و آزمون مغناطش سنج نمونه نوسانی (VSM) بر روی نمونه‌ها انجام شد. بررسی‌های فازشناسی نشان داد که یک ساختار بلوری و تک‌فاز از فریت کبالت در حضور عسل تشکیل می‌شود. همچنین، نتایج آزمون FTIR نشان داد که در حضور عسل به میزان چشمگیری از شدت باندهای آلی کاسته می‌شود. از سوی دیگر، حضور این عامل به‌واسطه افزایش پایداری ژل و همچنین افزایش حرارت تولیدی در مرحله پخت سبب ایجاد تغییرات شدیدی در اندازه، شکل ظاهری و همچنین خواص مغناطیسی نانوذرات تولیدی شد. افزودن عسل، با کاهش اندازه ذرات نانوبلورک‌ها و نانوذرات تولیدشده، افزایش نیروی وادارندگی مغناطیسی را به همراه داشت، به‌گونه‌ای که در نمونه حاوی 5/1 گرم عسل، این پارامتر مغناطیسی تا حدود 1580 اورستد افزایش یافت. همچنین، مغناطش اشباع نیز در حضور عسل بیشتر از نمونه خام بود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The Effect of Honey Addition on the Properties of CoFe2O4‎‏ Nanoparticles Synthesized by the Sol-Gel Auto-Combustion Method

نویسندگان [English]

  • Bahareh Fallah 1
  • Saeed Hasani 2
  • Alireza Mashreghi 2

1 M. Sc., Department of Mining and Metallurgical Engineering, Yazd University, Yazd, Yazd, Iran

2 Associate Professor, Department of Mining and Metallurgical Engineering, Yazd University, Yazd, Yazd, Iran

چکیده [English]

 In recent years, cobalt ferrite nanoparticles have ‎attracted the attention of many researchers due to their vast industrial applications. In this regard, the current study aimed to synthesize ‎CoFe2O4‎ nanoparticles in the presence of different amounts of honey (0, 0.5, 1, ‎‎1.5, 2, and 2.5 g) through the sol-gel auto-combustion method. In order to investigate the microstructure as well as the structural and ‎magnetic properties of the synthesized samples, XRD, DTA/TG, FTIR, ‎FESEM, ‎and VSM analyses were carried out. The phase analysis confirmed that the ‎high-purity cobalt ferrite nanoparticles were formed after the calcination process. The FTIR results showed that ‎the intensity of the organic bands was significantly reduced ‎by adding honey. However, the presence of this agent caused severe changes in the ‎morphology of nanoparticles ‎and also their magnetic properties. Reducing the particle and average grain sizes of the nanoparticles by the addition of ‎honey caused an increase in their coercivity and consequently, their ‎magnetic parameters were enhanced to about 1580 Oe in the sample containing 1.5 g of honey. In addition, the saturation ‎magnetization increased in the ‎presence of honey, compared to the raw sample.
 

کلیدواژه‌ها [English]

  • Cobalt Ferrite
  • Sol-Gel
  • Coercivity
  • Saturation Magnetization
  • Honey
  1. Routray, K. L., Saha, S., Behera, D., "Green synthesis approach for nano sized CoFe2O4 through aloe vera mediated sol-gel auto combustion method for high frequency devices", Materials Chemistry and Physics, Vol. 224, (2018), 29-35. https://doi.org/10.1016/j.matchemphys.11.073
  2. Mammo, T. W., Kumari, C. V., Margarette, S. J., Ramakrishna, A., Vemuri, R., Shankar Rao, Y. B., Vijaya Prasad, K. L., Ramakrishna, Y., Murali, N., "Synthesis, structural, dielectric and magnetic properties of cobalt ferrite nanomaterial prepared by sol-gel autocombustion technique", Physics B Condensed Matter, Vol. 581, (2020), 411769. https://doi.org/10.1016/j.physb.2019.411769
  3. Yáñez-Vilar, S., Sánchez-Andújar, M., Gómez-Aguirre, C., Mira, J., Señarís-Rodríguez, M. A., Castro-García, S., "A simple solvothermal synthesis of MFe2O4 (M=Mn, Co and Ni) nanoparticles", Journal of Solid State Chemistry, Vol. 182, No. 10, (2009), 2685- https://doi.org/10.1016/j.jssc.2009.07.028
  4. Vinosha, P. A., Manikandan, A., Preetha, A. C., Dinesh, A., Slimani, Y., Almessiere, M. A., Baykal, A., Xavier, B., Nirmala, G. F., "Review on recent advances of synthesis, magnetic properties, and water treatment applications of cobalt ferrite nanoparticles and nanocomposites", Journal of Superconductivity and Novel Magnetism, Vol. 34, No. 4, (2021), 995-1018. https://org/10.1007/s10948-021-05854-6
  5. Amiri, S., Shokrollahi, H., "The role of cobalt ferrite magnetic nanoparticles in medical science", Materials Science and Engineering: C., Vol. 33, No. 1, (2013) 1-8. https://org/10.1016/j.msec.2012.09.003
  6. Amirabadizadeh, A., Salighe, Z., Sarhaddi, R., Lotfollahi, Z., "Synthesis of ferrofluids based on cobalt ferrite nanoparticles: Influence of reaction time on structural, morphological and magnetic properties", Journal of Magnetism and Magnetic Materials, 434, (2017), 78-85. https://doi.org/10.1016/j.jmmm.2017.03.023
  7. Al-Anazi, A., Abdelraheem, W. H., Han, C., Nadagouda, M. N., Sygellou, L., Arfanis, M. K., Falaras, P., Sharma, V. K., Dionysiou, D. D., "Cobalt ferrite nanoparticles with controlled composition-peroxymonosulfate mediated degradation of 2-phenylbenzimidazole-5-sulfonic acid", Applied Catalysis B: Environmental, 221, (2018), 266-279. https://doi.org/10.1016/j.apcatb.2017.08.054
  8. Ghosh, B. K., Moitra, D., Chandel, M., Lulla, H., Ghosh, N. N., "Ag nanoparticle immobilized mesoporous TiO2-cobalt ferrite nanocatalyst: A highly active, versatile, magnetically separable and reusable catalyst", Materials Research Bulletin, Vol. 94, (2017), 361-370. https://org/10.1016/j.materresbull.2017.06.015
  9. Falsafi, F., Hashemi, B., Mirzaei, A., Fazio, E., Neri, F., Donato, N., Leonardi, S. G., Neri, G., "Sm-doped cobalt ferrite nanoparticles: A novel sensing material for conductometric hydrogen leak sensor", Ceramics International, Vol. 43, No. 1, (2017), 1029-1037. https://org/10.1016/j.ceramint.2016.10.035
  10. Joshi, S., Kamble, V. B., Kumar, M., Umarji, A. M., Srivastava, G., "Nickel substitution induced effects on gas sensing properties of cobalt ferrite nanoparticles", Journal of Alloys and Compounds, Vol. 654, (2016), 460-466. https://org/10.1016/j.jallcom.2015.09.119
  11. Jassal, V., Shanker, U., Shankar, S., "Synthesis ,characterization and applications of nano-structured metal hexacyanoferrates: A review", Journal of Environmental Analytical Chemistry, Vol. 2, No. 128, (2015), 2. https://doi.org/10.41722380-2391.1000128
  12. Vamvakidis, K., Mourdikoudis, S., Makridis, A., Paulidou, E., Angelakeris, M., Dendrinou-Samara, C., "Magnetic hyperthermia efficiency and MRI contrast sensitivity of colloidal soft/hard ferrite nanoclusters", Journal of Colloid and Interface Science, 511, (2018), 101-109. https://doi.org/10.1016/j.jcis.2017.10.001
  13. Shahbahrami, B., Rabiee, S. M., Shidpoor, R., "An overview of cobalt ferrite core-shell nanoparticles for magnetic hyperthermia applications", Advanced Ceramics Progress, 6, No. 1, (2020), 1-15. https://doi.org/10.30501/acp.2020.105923
  14. Safi, R., Ghasemi, A., Shoja-Razavi, R., Tavousi, M., "The role of pH on the particle size and magnetic consequence of cobalt ferrite", Journal of Magnetism and Magnetic Materials, 396, (2015), 288-294. https://doi.org/10.1016/j.jmmm.2015.08.022
  15. Avazpour, L., Toroghinejad, M. R., Shokrollahi, H., "Synthesis of single-phase cobalt ferrite nanoparticles via a novel EDTA/EG precursor-based route and their magnetic properties", Journal of Alloys and Compounds, Vol. 637, (2015), 497-503. https://org/10.1016/j.jallcom.2015.03.041
  16. Ngo, T. P. H., Le, T. K., "Polyethylene glycol-assisted sol-gel synthesis of magnetic CoFe2O4 powder as photo-fenton catalysts in the presence of oxalic acid", Journal of Sol-Gel Science and Technology, 88, No. 1, (2018), 211-219. https://doi.org/10.1007/s10971-018-4783-y
  17. Nikmanesh, H., Eshraghi, M., "Cation distribution, magnetic and structural properties of CoCrxFe2-xO4: Effect of calcination temperature and chromium substitution", Journal of Magnetism and Magnetic Materials, Vol. 471, (2019), 294-303. https://org/10.1016/j.jmmm.2018.09.102
  18. Imanipour, P., Hasani, S., Seifoddini, A., Farnia, A., Karimabadi, F., Jahanbani-Ardakani, K., Davar, F., "The possibility of vanadium substitution on Co lattice sites in CoFe2O4 synthesized by sol-gel auto combustion method", Journal of Sol-Gel Science and Technology, Vol. 95, No. 1, (2020), 157-167. https://org/10.1007/s10971-020-05316-w
  19. Shobana, M. K., Kwon, H., Choe, H., "Structural studies on the yttrium-doped cobalt ferrite powders synthesized by sol-gel combustion method", Journal of Magnetism and Magnetic Materials, Vol. 324, No. 14, (2012), 2245-2248. https://org/10.1016/j.jmmm.2012.02.110
  20. Imanipour, P., Hasani, S., Seifoddini, A., Nabiałek, M., "Synthesis and characterization of zinc and vanadium co-substituted CoFe2O4 nanoparticles synthesized by using the sol-gel auto-combustion method", Nanomaterials, Vol. 12, No. 5, (2022), 752. https://org/10.3390/nano12050752
  21. Topkaya, R., Kurtan, U., Junejo, Y., Baykal, A., "Sol–gel auto combustion synthesis of CoFe2O4/1-methyl-2-pyrrolidone nanocomposite with ethylene glycol: Its magnetic characterization", Materials Research Bulletin, Vol. 48, No. 9, (2013), 3247-3253. https://doi.org/10.1016/j.materresbull.2013.04.071
  22. Sivakumar, M., Kanagesan, S., Suresh Babu, R., Jesurani, S., Velmurugan, R., Thirupathi, C., Kalaivani, T., "Synthesis of CoFe2O4 powder via PVA assisted sol-gel process", Journal of Materials Science: Materials in Electronics, Vol. 23, No. 5, (2012), 1045-1049. https://org/10.1007/s10854-011-0545-0
  23. Sumathi, S., Nehru, M., "Synthesis, characterization, and influence of fuel on dielectric and magnetic properties of cobalt ferrite nanoparticles", Journal of Superconductivity and Novel Magnetism, Vol. 29, No. 9, (2016), 1317-1323. https://org/10.1007/s10948-016-3416-3
  24. Sun, J., Wang, Z., Wang, Y., Zhu, Y., Shen, T., Pang, L., Wei, K., Li, F., "Synthesis of the nanocrystalline CoFe2O4 ferrite thin films by a novel sol–gel method using glucose as an additional agent", Materials Science and Engineering: B, Vol. 177, No. 2, (2012), 269-273. https://org/10.1016/j.mseb.2011.12.017
  25. Afshari, M., Rouhani Isfahani, A. R., Hasani, S., Davar, F., Jahanbani Ardakani, K., "Effect of apple cider vinegar agent on the microstructure, phase evolution, and magnetic properties of CoFe2O4 magnetic nanoparticles", International Journal of Applied Ceramic Technology, Vol. 16, No. 4, (2019) 1612-1621. https://org/10.1111/ijac.13224
  26. Rouhani, A. R., Esmaeil‐Khanian, A. H., Davar, F., Hasani, S., "The effect of agarose content on the morphology, phase evolution, and magnetic properties of CoFe2O4 nanoparticles prepared by sol‐gel autocombustion method", International Journal of Applied Ceramic Technology, Vol. 15, No. 3, (2018), 758-765. https://doi.org/10.1111/ijac.12832
  27. Ahmadi, R., Siefoddini, A., Hasany, M., Hasani, S., "Cobalt ferrite nanoparticles synthesis by sol–gel auto-combustion method in the presence of agarose: a non-isothermal kinetic analysis", Journal of Thermal Analysis and Calorimetry, (2022), 1-4. https://doi.org/10.1007/s10973-022-11391-8
  28. Ansari, F., Sobhani, A., Salavati-Niasari, M., "Simple sol-gel synthesis and characterization of new CoTiO3/CoFe2O4 nanocomposite by using liquid glucose, maltose and starch as fuel, capping and reducing agents", Journal of Colloid and Interface Science, Vol. 514, (2018), 723-732. https://doi.org/10.1016/j.jcis.2017.12.083
  29. Jaafari, Z., Seifoddini, A., Hasani, S., Rezaei-Shahreza, P., "Kinetic analysis of crystallization process in [(Fe9Ni0.1)77Mo5P9C7.5B1.5]100−xCux (x = 0.1 at.%) BMG", Journal of Thermal Analysis and Calorimetry, Vol. 134, No. 3, (2018), 1565-1574. https://doi.org/10.1007/s10973-018-7372-y
  30. Imanipour, P., Hasani, S., Seifoddini, A., Farnia, A., Karimabadi, F., Jahanbani-Ardakani, K., Davar, F., "The possibility of vanadium substitution on Co lattice sites in CoFe2O4 synthesized by sol–gel autocombustion method", Journal of Sol-Gel Science and Technology, Vol. 95, No. 1, (2020), 157-167. https://doi.org/10.1007/s10971-020-05316-w
  31. Yadav, R. S., Havlica, J., Kuřitka, I., Kozakova, Z., Palou, M., Bartoníčková, E., Boháč, M., Frajkorová, F., Masilko, J., Kalina, L., Hajdúchová, M., Enev, V., Wasserbauer, J., "Magnetic properties of dysprosium-doped cobalt ferrite nanoparticles synthesized by starch-assisted sol-gel auto-combustion method", Journal of Superconductivity and Novel Magnetism, Vol. 28, No. 7, (2015), 2097-2107. https://doi.org/10.1007/s10948-015-3009-6
  32. Samoila, P., Cojocaru, C., Sacarescu, L., Dorneanu, P. P., Domocos, A. A., Rotaru, A., "Remarkable catalytic properties of rare-earth doped nickel ferrites synthesized by sol-gel auto-combustion with maleic acid as fuel for CWPO of dyes", Applied Catalysis B: Environmental, Vol. 202, (2017), 21-32. https://doi.org/10.1016/j.apcatb.2016.09.012
  33. Dippong, T., Levei, E. A., Cadar, O., Deac, I. G., Diamandescu, L., Barbu-Tudoran, L., "Effect of nickel content on structural, morphological and magnetic properties of NixCo1-xFe2O4/SiO2 nanocomposites", Journal of Alloys and Compounds, Vol. 786, (2019), 330-340. https://doi.org/10.1016/j.jallcom.2019.01.363
  34. Hashemi, S. M., Hasani, S., Ardakani, K. J., Davar, F., "The effect of simultaneous addition of ethylene glycol and agarose on the structural and magnetic properties of CoFe2O4 nanoparticles prepared by the sol-gel auto-combustion method", Journal of Magnetism and Magnetic Materials, Vol. 492, (2019), 165714. https://doi.org/10.1016/j.jmmm.2019.165714
  35. Amaliya, A. P., Anand, S., Pauline, S., "Investigation on structural, electrical and magnetic properties of titanium substituted cobalt ferrite nanocrystallites", Journal of Magnetism and Magnetic Materials, Vol. 467, (2018), 14-28. https://doi.org/10.1016/j.jmmm.2018.07.058
  36. Ali, M. B., El Maalam, K., El Moussaoui, H., Mounkachi, O., Hamedoun, M., Masrour, R., Hlil, E. K., Benyoussef, A., "Effect of zinc concentration on the structural and magnetic properties of mixed Co-Zn ferrites nanoparticles synthesized by sol/gel method", Journal of Magnetism and Magnetic Materials, Vol. 398, (2016), 20-25. https://doi.org/10.1016/j.jmmm.2015.08.097
  37. Lynda, I., Durka, M., Dinesh, A., Manikandan, A., Jaganathan, S. K., Baykal, A., Antony, S. A., "Enhanced magneto-optical and photocatalytic properties of ferromagnetic Mg1−yNiyFe2O4 (0.0 ≤ y ≤ 1.0) spinel nano-ferrites", Journal of Superconductivity and Novel Magnetism, Vol. 31, No. 11, (2018), 3637-3647. https://doi.org/10.1007/s10948-018-4623-x
  38. Mirzaee, S., Shayesteh, S. F., Mahdavifar, S., "Anisotropy investigation of cobalt ferrite nanoparticles embedded in polyvinyl alcohol matrix : A Monte Carlo study", Polymer, Vol. 55, No. 16, (2014), 3713-3719. https://doi.org/10.1016/j.polymer.2014.06.039
  39. Saravanakumar, B., Rani, B. J., Ravi, G., Thambidurai, M., Yuvakkumar, R., Yuvakkumar, "Reducing agent (NaBH4) dependent structure, morphology and magnetic properties of nickel ferrite (NiFe2O4) nanorods", Journal of Magnetism and Magnetic Materials, Vol. 428, (2016), 78-85. https://doi.org/10.1016/j.jmmm.2016.12.017
  40. Gharagozlou, M., "Synthesis , characterization and influence of calcination temperature on magnetic properties of nanocrystalline spinel Co-ferrite prepared by polymeric precursor method", Journal of Alloys and Compounds, Vol. 486, No. 1-2, (2009), 660-665. https://doi.org/10.1016/j.jallcom.2009.07.025
  41. Yadav, R. S., Havlica, J., Hnatko, M., Šajgalík, P., Alexander, C., Palou, M., Bartoníčková, E., Boháč, M., Frajkorová, F., Masilko, J., Zmrzlý, M., Kalina, L., Hajdúchová, M., Enev, V., "Magnetic properties of Co1−xZnxFe2O4 spinel ferrite nanoparticles synthesized by starch-assisted sol–gel autocombustion method and its ball milling", Journal of Magnetism and Magnetic Materials, Vol. 378, (2015), 190-199. https://doi.org/10.1016/j.jmmm.2014.11.027
  42. Sivakumar, M., Kanagesan, S., Chinnaraj, K., Suresh Babu, R., Nithiyanantham, S., "Synthesis, characterization and effects of citric acid and PVA on magnetic properties of CoFe2O4", Journal of Magnetism and Magnetic Materials, Vol. 23, (2013), 439-445. https://doi.org/10.1007/s10904-012-9801-x
  43. Prabhakaran, T., Mangalaraja, R. V., Denardin, J. C., Varaprasad, K., "The effect of capping agents on the structural and magnetic properties of cobalt ferrite nanoparticles", Journal of Materials Science: Materials in Electronics, Vol. 29, No. 14, (2018), 11774-11782. https://doi.org/10.1007/s10854-018-9276-9