نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی پزشکی، دانشکده فنی و مهندسی، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، تهران، ایران

2 استادیار، گروه سامانه‌های نوین دارورسانی، پژوهشگاه بسپار و پتروشیمی ایران، تهران، تهران، ایران

3 استادیار، گروه مهندسی پزشکی، دانشکده فنی و مهندسی، ‌واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، تهران، ایران

4 دانشیار، گروه علوم تشریحی، دانشکده پزشکی، دانشگاه علوم پزشکی اصفهان، اصفهان، اصفهان، ایران

چکیده

مهم‌ترین راهبرد در مهندسی بافت، ارتباط بین سه جزء زیست‌ماده، یاخته‌های زنده و مولکول‌های فعال زیستی به‌منظور ساخت محیط‌ های نسخه‌برداری‌شده از شرایط بافت آسیب‌دیده و سپس ‌ترویج بافت با هدف ترمیم و بازسازی است. برای اثرگذاری بالینی، این محیط‌ ها باید تا حد امکان ویژگی‌های اصلی ماتریس خارج یاخته‌ای (ECM) را در مقیاس یاخته‌ای تکرار کنند. مهندسی بافت توانسته است داربست‌های هیبریدی را برای حمایت از بازسازی بافت غضروف با استفاده از روش‌های چاپ ‌سه‌بعدی طراحی کند. در این مطالعه، داربست‌های ‌سه‌بعدی با استفاده از پلی‌کاپرولاکتون/پلی‌لاکتیک ـ کو ـ گلیکولیک اسیدِ (PCL/PLGA) موردتأیید FDA طراحی شدند. در ادامه، نانوذرات آلژینات با غلظت‌های 40 و 45 (درصدوزنی)، به‌منظور بهبود چاپ‌پذیری، خواص مکانیکی و بررسی زیست‌سازگاری داربست‌ها، به جوهر زیستی اضافه شد. درنهایت، داربست‌های چاپ سه‌بعدی‌، براساس خواص مکانیکی، میزان آب‌دوستی سطح، میزان جذب آب، زیست‌تخریب‌پذیری، ریخت‌شناسی سطوح و میزان مانایی یاخته‌ای ارزیابی شدند. نتایج نشان داد که افزایش درصد نانوذرات آلژینات در جوهر زیستی سبب افزایش درصد تخلخل‌ها، آب‌دوستی سطح، افزایش خواص مکانیکی، مانایی یاخته و قابلیت چاپ‌پذیری می‌شود. همچنین، نتایج نشان داد که جذب آب و مدول‌ فشاری در داربست‌های PCL/PLGA چاپ ‌سه‌بعدی‌ حاوی 45 درصد نانوذرات آلژینات، بهینه‌تر از گروه‌های دیگر است و این جوهر زیستی می‌تواند در چاپ ‌سه‌بعدی داربست‌های به‌کاررفته برای رفع نواقص مهندسی بافت استفاده شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

E-Design and Fabrication of 3D-Printed Polycaprolactone/Poly Lactic-co-Glycolic Acid Hybrid Scaffold Containing Alginate Nanoparticles for Cartilage Tissue Engineering Applications

نویسندگان [English]

  • Babak Pourmollaabbassi 1
  • Hamid Mahdavi 2
  • Shahrokh Shojaee 2
  • Hossien Salehi Rozveh 3
  • Ali Valiani 4

1 Ph. D. Student, Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, P. O. Box:13185/768, Tehran, Tehran, Iran

2 Assistant Professor, Department of Novel Drug Delivery Systems, Iran Polymer and Petrochemical Institute, Tehran, Tehran, Iran

3 Associate Professor, Department of Anatomical and Molecular Biology Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Isfahan, Iran

4 Associate Professor, Department of Anatomical and Molecular Biology Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Isfahan, Iran

چکیده [English]

Abstract     The most important strategy in tissue engineering is the relationship between the three components of biomaterials, living cells, and biologically active molecules suitable for tissue regeneration. To be clinically effective, these environments must replicate, as closely as possible, the main characteristics of the native Extracellular Matrix (ECM) on a cellular scale. Tissue engineering is generally employed to create hybrid scaffolding to support cartilage tissue regeneration using fabrication 3D printing techniques. The current study designed a three-dimensional scaffold using FDA-approved Polycaprolactone/Poly Lactic-co-Glycolic Acid (PCL/PLGA) polymers. Then, 40 and 45 (w/w) alginate nanoparticles were added to the bio-ink to improve the printability, mechanical properties, and biocompatibility of the scaffolds. Finally, 3D-printed scaffolds were evaluated using mechanical properties, surface hydrophilicity, water absorption, biodegradability, surface morphology, and cell viability. The results showed that increasing the percentage of alginate nanoparticles in the bio-ink would increase the percentage of porosity, surface hydrophilicity, mechanical properties, cell viability, and printability. In addition, water absorption and compression modules of PCL/PLGA 3D-printed scaffolds containing 45 % alginate were optimized, compared to those of other groups, hence used as bio-ink in 3D printing of scaffolds in tissue engineering defects.

کلیدواژه‌ها [English]

  • 3D Printing
  • Alginate
  • Polycaprolactone
  • Polylactic Acid
  • Tissue Engineering
  1. Melchels, F. P. W., Domingos, M. A. N., Klein, T. J., Malda, J., Bartolo, P. J., Hutmacher, D. W., "Additive manufacturing of tissues and organs", Progress in Polymer Science, Vol. 37, No. 8, (2012), 1079-1104. https://doi.org/10.1016/j.progpolymsci.2011.11.007
  2. Ranga, A., Lutolf, M. P., "High-throughput approaches for the analysis of extrinsic regulators of stem cell fate", Current Opinion in Cell Biology, Vol. 24, No. 2, (2012), 236-244. https://doi.org/10.1016/j.ceb.2012.01.006
  3. Khademhosseini, A., Langer, R., Borenstein, J., Vacanti, J. P., "Microscale technologies for tissue engineering and biology", Proceedings of the National Academy of Sciences, Vol. 103, No. 8, (2006), 2480-2487. https://doi.org/10.1073/pnas.0507681102
  4. Tuan, R. S., Boland, G., Tuli, R., "Adult mesenchymal stem cells and cellbased tissue engineering", Arthritis Research and Therapy, Vol. 5, No. 1, (2003), 1-14. https://doi.org/10.1186/ar991
  5. Newman, D. J., Cragg, G. M., "Natural products as sources of new drugs over the 30 years from 1981 to 2010", Journal of Natural Products, Vol. 75, No. 3, (2012), 311-335. https://doi.org/10.1021/np200906s
  6. , P. X., "Biomimetic materials for tissue engineering", Advanced Drug Delivery Review, Vol. 60, No. 2, (2008), 184-198. https://doi.org/10.1016/j.addr.2007.08.041
  7. Pereira, R. F., Barrias, C. C., Granja, P. L., Bartolo, P. J., "Advanced biofabrication strategies for skin regeneration and repair", Nanomedicine, Vol. 8, No. 4, (2013), 603-621. https://doi.org/10.2217/nnm.13.50
  8. Brittberg, M., "Cell carriers as the next generation of cell therapy for cartilage repair: A review of the matrix-induced autologous chondrocyte implantation procedure", The American Journal of Sports Medicine, Vol. 38, No. 6, (2010), 1259-1271. https://doi.org/10.1177/0363546509346395
  9. Bentley, G., Biant, L. C., Vijayan, S., Macmull, S., Skinner, J. A., Carrington, R. W., "Minimum ten-year results of a prospective randomised study of autologous chondrocyte implantation versus mosaicplasty for symptomatic articular cartilage lesions of the knee", The Journal of Bone and Joint Surgery, British Volume, Vol. 94, No. 4, (2012), 504-509. https://doi.org/10.1302/0301-620X.94B4.27495
  10. Adkisson IV, H. D., Martin, J. A., Amendola, R. L., Milliman, C., Mauch, K. A., Katwal, A. B., Seyedin, M., Amendola, A., Streeter, P. R., Buckwalter, J. A., "The potential of human allogeneic juvenile chondrocytes for restoration of articular cartilage", The American Journal of Sports Medicine, Vol. 38, No. 7, (2010), 1324-1333. https://doi.org/10.1177/0363546510361950
  11. Negrin, L., Kutscha-Lissberg, F., Gartlehner, G., Vecsei, V., "Clinical outcome after microfracture of the knee: A meta-analysis of before/after-data of controlled studies", International Orthopaedics, Vol. 36, No. 1, (2012), 43-50. https://doi.org/10.1007/s00264-011-1364-x
  12. Kreuz, P. C., Steinwachs, M. R., Erggelet, C., Krause, S. J., Konrad, G., Uhl, M., Südkamp, N., "Results after microfracture of full-thickness chondral defects in different compartments in the knee", Osteoarthritis and Cartilage, Vol. 14, No. 11, (2006), 1119-1125. https://doi.org/10.1016/j.joca.2006.05.003
  13. Xu, J., Fang, Q., Liu, Y., Zhou, Y., Ye, Z., Tan, W. S., "In situ ornamenting poly (ε-caprolactone) electrospun fibers with different fiber diameters using chondrocyte-derived extracellular matrix for chondrogenesis of mesenchymal stem cells", Colloids and Surfaces B: Biointerfaces, Vol. 197, (2021), 111374. https://doi.org/10.1016/j.colsurfb.2020.111374
  14. Conoscenti, G., Schneider, T., Stoelzel, K., Pavia, F. C., Brucato, V., Goegele, C., La Carrubba, V., Schulze-Tanzil, G., "PLLA scaffolds produced by thermally induced phase separation (TIPS) allow human chondrocyte growth and extracellular matrix formation dependent on pore size", Materials Science and Engineering: C., Vol. 80, (2017), 449-459. https://doi.org/10.1016/j.msec.2017.06.011
  15. Setayeshmehr, M., Esfandiari, E., Hashemibeni, B., Tavakoli, A. H., Rafienia, M., Samadi Kuchaksaraei, A., Moroni, L., Joghataei, M. T., "Chondrogenesis of human adipose-derived mesenchymal stromal cells on the [devitalized costal cartilage matrix/poly (vinyl alcohol)/fibrin] hybrid scaffolds", European Polymer Journal, Vol. 118, (2019), 528-541. https://doi.org/10.1016/j.eurpolymj.2019.04.044
  16. Chua, C. K., Leong, K. F., An, J., "Introduction to rapid prototyping of biomaterials", Rapid Prototyping of Biomaterials, Woodhead Publishing, (2020), 1-15. https://doi.org/10.1016/B978-0-08-102663-2.00001-0
  17. Hong, S., Sycks, D., Chan, H. F., Lin, S., Lopez, G. P., Guilak, F., Leong, K. W., Zhao, X., "3D printing of highly stretchable and tough hydrogels into complex, cellularized structures", Advanced Materials, Vol. 27, No. 27, (2015), 4035-4040. https://doi.org/10.1002/adma.201501099
  18. Chen, L., Tang, X., Xie, P., Xu, J., Chen, Z., Cai, Z., He, P., Zhou, H., Zhang, D., Fan, T., "3D printing of artificial leaf with tunable hierarchical porosity for CO2 photoreduction", Chemistry of Materials, Vol. 30, No. 3, (2018), 799-806. https://doi.org/10.1021/acs.chemmater.7b04313
  19. Berry, D. B., You, S., Warner, J., Frank, L. R., Chen, S., Ward, S. R., "A 3D tissue-printing approach for validation of diffusion tensor imaging in skeletal muscle", Tissue Engineering, Part A, Vol. 23, No. 17-18, (2017), 980-988. https://doi.org/10.1089/ten.tea.2016.0438
  20. Clark, E. A., Alexander, M. R., Irvine, D. J., Roberts, C. J., Wallace, M. J., Sharpe, S., Yoo, J., Hague, R. J., Tuck, C. J., Wildman, R. D., "3D printing of tablets using inkjet with UV photoinitiation", International Journal of Pharmaceutics, Vol. 529, No. 1-2, (2017), 523-530. https://doi.org/10.1016/j.ijpharm.2017.06.085
  21. Vaezi, M., Zhong, G., Kalami, H., Yang, S., "Extrusion-based 3D printing technologies for 3D scaffold engineering", Functional 3D Tissue Engineering Scaffolds, Woodhead Publishing, (2018), 235-254. https://doi.org/10.1080/00914037.2020.1725764
  22. Kirchmajer, D. M., Gorkin Iii, R., "An overview of the suitability of hydrogel-forming polymers for extrusion-based 3D-printing", Journal of Materials Chemistry B, Vol. 3, No. 20, (2015), 4105-4117. https://doi.org/10.1039/C5TB00393H
  23. Landers, R., Pfister, A., Hübner, U., John, H., Schmelzeisen, R., Mülhaupt, R., "Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques", Journal of Materials Science, Vol. 37, No. 15, (2002), 3107-3116. https://doi.org/10.1023/A:1016189724389
  24. Trachtenberg, J. E., Placone, J. K., Smith, B. T., Piard, C. M., Santoro, M., Scott, D. W., Fisher, J. P., Mikos, A. G., "Extrusion-based 3D printing of poly (propylene fumarate) in a full-factorial design", ACS Biomaterials Science & Engineering, Vol. 2, No. 10, (2016), 1771-1780. https://doi.org/10.1021/acsbiomaterials.6b00026
  25. Yang, G. H., Kim, M., Kim, G., "Additive-manufactured polycaprolactone scaffold consisting of innovatively designed microsized spiral struts for hard tissue regeneration", Biofabrication, Vol. 9, No. 1, (2016), 015005. https://doi.org/10.1088/1758-5090/9/1/015005
  26. Park, S., Kim, G., Jeon, Y. C., Koh, Y., Kim, W., "3D polycaprolactone scaffolds with controlled pore structure using a rapid prototyping system", Journal of Materials Science: Materials in Medicine, Vol. 20, No. 1, (2009), 229-234. https://doi.org/10.1007/s10856-008-3573-4
  27. Ulery, B. D., Nair, L. S., Laurencin, C. T., "Biomedical applications of biodegradable polymers", Journal of Polymer Science, Part B: Polymer Physics, Vol. 49, No. 12, (2011), 832-864. https://doi.org/10.1002/polb.22259
  28. Heo, S. J., Kim, S. E., Wei, J., Kim, D. H., Hyun, Y. T., Yun, H. S., Kim, H. K., Yoon, T. R., Kim, S. H., Park, S. A., Shin, J. W., "In vitro and animal study of novel nano-hydroxyapatite/poly (ɛ-caprolactone) composite scaffolds fabricated by layer manufacturing process", Tissue Engineering, Part A, Vol. 15, No. 5, (2009), 977-989. https://doi.org/10.1089/ten.tea.2008.0190
  29. Holländer, J., Genina, N., Jukarainen, H., Khajeheian, M., Rosling, A., Mäkilä, E., Sandler, N., "Three-dimensional printed PCL-based implantable prototypes of medical devices for controlled drug delivery", Journal of Pharmaceutical Sciences, Vol. 105, No. 9, (2016), 2665-2676. https://doi.org/10.1016/j.xphs.2015.12.012
  30. Honarvar, A., Karbasi, S., Hashemibeni, B., Setayeshmehr, M., Kazemi, M., Valiani, A., "Effects of cartilage acellular solubilised ECM on physicomechanical and biological properties of polycaprolactone/fibrin hybrid scaffold fabricated by 3D-printing and salt-leaching methods", Materials Technology, (2020), 1-9. https://doi.org/10.1080/10667857.2020.1824148
  31. Kwon, D. Y., Kwon, J. S., Park, S. H., Park, J. H., Jang, S. H., Yin, X. Y., Yun, J. H., Kim, J. H., Min, B. H., Lee, J. H., Kim, W. D., "A computer-designed scaffold for bone regeneration within cranial defect using human dental pulp stem cells", Scientific Reports, Vol. 5, No. 1, (2015), 1-6. https://doi.org/10.1038/srep12721
  32. Bonzani, I. C., George, J. H., Stevens, M. M., "Novel materials for bone and cartilage regeneration”, Current Opinion in Chemical Biology, Vol. 10, No. 6, (2006), 568-575. https://doi.org/10.1016/j.cbpa.2006.09.009
  33. Kolan, K. C., Li, W., Althage, R. A., Semon, J. A., Day, D. E., Leu, M. C., "Solvent and melt based extrusion 3D printing of polycaprolactone bioactive glass composite for tissue engineering", Proceedings of the 3rd International Conference on Progress in Additive Manufacturing, Singapore, (2018), 14-17. https://doi.org/10.25341/D4B018
  34. Lin, K. F., He, S., Song, Y., Wang, C. M., Gao, Y., Li, J. Q., Tang, P., Wang, Z., Bi, L., Pei, G. X., "Low-temperature additive manufacturing of biomimic three-dimensional hydroxyapatite/collagen scaffolds for bone regeneration", ACS Applied Materials & Interfaces, Vol. 8, No. 11, (2016), 6905-6916. https://doi.org/10.1021/acsami.6b00815
  35. Lee, H., Kim, G., "Cryogenically fabricated three-dimensional chitosan scaffolds with pore size-controlled structures for biomedical applications", Carbohydrate Polymers, Vol. 85, No. 4, (2011), 817-823. https://doi.org/10.1016/j.carbpol.2011.04.001
  36. Zhang, T., Zhang, H., Zhang, L., Jia, S., Liu, J., Xiong, Z., Sun, W., "Biomimetic design and fabrication of multilayered osteochondral scaffolds by low-temperature deposition manufacturing and thermal-induced phase-separation techniques", Biofabrication, Vol. 9, No. 2, (2017), 025021. https://doi.org/10.1088/1758-5090/aa7078
  37. Shi, L., Hu, Y., Ullah, M. W., Ou, H., Zhang, W., Xiong, L., Zhang, X., "Cryogenic free-form extrusion bioprinting of decellularized small intestinal submucosa for potential applications in skin tissue engineering", Biofabrication, Vol. 11, No. 3, (2019), 035023. https://doi.org/10.1088/1758-5090/ab15a9
  38. Ghosouri, S., Setayeshmehr, M., Taheri-Kafrani, A., Valiani, A., "Cartilage particles can promote chondrogenesis of adipose-derived stromal cells on poly (ε-caprolactone)/fibrin hybrid constructs prepared via sandwich model", Journal of Biomimetics, Biomaterials and Biomedical Engineering, Vol. 47, (2020), 63-74. https://doi.org/10.4028/www.scientific.net/JBBBE.47.63
  39. Zhang, W., Ullah, I., Shi, L., Zhang, Y., Ou, H., Zhou, J., Ullah, M. W., Zhang, X., Li, W., "Fabrication and characterization of porous polycaprolactone scaffold via extrusion-based cryogenic 3D printing for tissue engineering", Materials & Design, Vol. 180, (2019), 107946. https://doi.org/10.1016/j.matdes.2019.107946
  40. Makadia, H. K., Siegel, S. J., "Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier", Polymers, Vol. 3, No. 3, (2011), 1377-1397. https://doi.org/10.3390/polym3031377
  41. Kamaly, N., Yameen, B., Wu, J., Farokhzad, O. C., "Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release", Chemical Reviews, Vol. 116, No. 4, (2016), 2602-2663. https://doi.org/10.1021/acs.chemrev.5b00346
  42. Gorji, M., Zargar, A., Setayeshmehr, M., Ghasemi, N., Soleimani, M., Kazemi, M., Hashemibeni, B., "Releasing and structural/mechanical properties of nano-particle/punica granatum (pomegranate) in poly (lactic-co-glycolic) acid/fibrin as nano-composite scaffold", Bratislavske Lekarske Listy, Vol. 122, No. 1, (2021), 54-64. https://doi.org/10.4149/bll_2021_007
  43. Pourentezari, M., Sharifian, Z., Mardani, M., Valiani, A., Rarani, M. Z., Setayeshmehr, M., Eini, F., Hashemibeni, B., "Comparison of TGF-β3 and avocado/soybean unsaponifiable on chondrogenesis of human adipose-derived stem cells on poly (lactic-co-glycolic) acid/hyaluronic acid hybrid scaffold", Iranian Journal of Basic Medical Sciences, Vol. 24, No. 1, (2021), 24. https://doi.org/10.22038/ijbms.2020.44409.10391
  44. Rnjak-Kovacina, J., Weiss, A. S., "Increasing the pore size of electrospun scaffolds", Tissue Engineering, Part B: Reviews, Vol. 17, No. 5, (2011), 365-372. https://doi.org/10.1089/ten.teb.2011.0235
  45. Xia, Z., Huang, Y., Adamopoulos, I. E., Walpole, A., Triffitt, J. T., Cui, Z., "Macrophage‐mediated biodegradation of poly (DL‐lactide‐co‐glycolide) in vitro", Journal of Biomedical Materials Research Part A, Vol. 79A, No. 3, (2006), 582-590. https://doi.org/10.1002/jbm.a.30853
  46. Kim, S. S., Park, M. S., Jeon, O., Choi, C. Y., Kim, B. S., "Poly (lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering", Biomaterials, Vol. 27, No. 8, (2006), 1399-1409. https://doi.org/10.1016/j.biomaterials.2005.08.016
  47. Sa, M. W., Kim, J. Y., "Effect of various blending ratios on the cell characteristics of PCL and PLGA scaffolds fabricated by polymer deposition system", International Journal of Precision Engineering and Manufacturing, Vol. 14, No. 4, (2013), 649-655. https://doi.org/10.1007/s12541-013-0087-x
  48. Kim, B. S., Jang, J., Chae, S., Gao, G., Kong, J. S., Ahn, M., Cho, D. W., "Three-dimensional bioprinting of cell-laden constructs with polycaprolactone protective layers for using various thermoplastic polymers", Biofabrication, Vol. 8, No. 3, (2016), 035013. https://doi.org/10.1088/1758-5090/8/3/035013
  49. Zhao, X., Lang, Q., Yildirimer, L., Lin, Z. Y., Cui, W., Annabi, N., Ng, K. W., Dokmeci, M. R., Ghaemmaghami, A. M., Khademhosseini, A., "Photocrosslinkable gelatin hydrogel for epidermal tissue engineering", Advanced Healthcare Materials, Vol. 5, No. 1, (2016), 108-118. https://doi.org/10.1002/adhm.201500005
  50. Kim, M., Kim, G., "3D multi-layered fibrous cellulose structure using an electrohydrodynamic process for tissue engineering", Journal of Colloid and Interface Science, Vol. 457, (2015), 180-187. https://doi.org/10.1016/j.jcis.2015.07.007
  51. Fedorovich, N. E., Alblas, J., de Wijn, J. R., Hennink, W. E., Verbout, A. J., Dhert, W. J., "Hydrogels as extracellular matrices for skeletal tissue engineering: State-of-the-art and novel application in organ printing", Tissue Engineering, Vol. 13, No. 8, (2007), 1905-1925. https://doi.org/10.1089/ten.2006.0175
  52. Augst, A. D., Kong, H. J., Mooney, D. J., "Alginate hydrogels as biomaterials", Macromolecular Bioscience, Vol. 6, No. 8, (2006), 623-633. https://doi.org/10.1002/mabi.200600069
  53. Gasperini, L., Mano, J. F., Reis, R. L., "Natural polymers for the microencapsulation of cells", Journal of the Royal Society Interface, Vol. 11, No. 100, (2014), 20140817. https://doi.org/10.1098/rsif.2014.0817
  54. Slaughter, B. V., Khurshid, S. S., Fisher, O. Z., Khademhosseini, A., Peppas, N. A., "Hydrogels in regenerative medicine", Advanced Materials, Vol. 21, No. 32‐33, (2009), 3307-3329. https://doi.org/10.1002/adma.200802106
  55. Jeon, O., Bouhadir, K. H., Mansour, J. M., Alsberg, E., "Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties", Biomaterials, Vol. 30, No. 14, (2009), 2724-2734. https://doi.org/10.1016/j.biomaterials.2009.01.034
  56. Kundu, J., Shim, J. H., Jang, J., Kim, S. W., Cho, D. W., "An additive manufacturing‐based PCL–alginate–chondrocyte bio-printed scaffold for cartilage tissue engineering", Journal of Tissue Engineering and Regenerative Medicine, Vol. 9, No. 11, (2015), 1286-1297. https://doi.org/10.1002/term.1682
  57. Khattak, S. F., Spatara, M., Roberts, L., Roberts, S. C., "Application of colorimetric assays to assess viability, growth and metabolism of hydrogel-encapsulated cells", Biotechnology Letters, Vol. 28, No. 17, (2006), 1361-1370. https://doi.org/10.1007/s10529-006-9104-9
  58. Kong, H. J., Smith, M. K., Mooney, D. J., "Designing alginate hydrogels to maintain viability of immobilized cells", Biomaterials, Vol. 24, No. 22, (2003), 4023-4029. https://doi.org/10.1016/S0142-9612(03)00295-3
  59. Maher, P. S., Keatch, R. P., Donnelly, K., Mackay, R. E., Paxton, J. Z., "Construction of 3D biological matrices using rapid prototyping technology", Rapid Prototyping Journal, (2009). https://doi.org/10.1108/13552540910960307
  60. Setayeshmehr, M., Esfandiari, E., Rafieinia, M., Hashemibeni, B., Taheri-Kafrani, A., Samadikuchaksaraei, A., Kaplan, D. L., Moroni, L., Joghataei, M. T., "Hybrid and composite scaffolds based on extracellular matrices for cartilage tissue engineering", Tissue Engineering Part B: Reviews, Vol. 25, No. 3, (2019), 202-224. https://doi.org/10.1089/ten.teb.2018.0245
  61. Kundu, J., Shim, J. H., Jang, J., Kim, S. W., Cho, D. W., "An additive manufacturing‐based PCL–alginate–chondrocyte bioprinted scaffold for cartilage tissue engineering", Journal of Tissue Engineering and Regenerative Medicine, Vol. 9, No. 11, (2015), 1286-1297. https://doi.org/10.1002/term.1682
  62. Shim, J. H., Yoon, M. C., Jeong, C. M., Jang, J., Jeong, S. I., Cho, D. W., Huh, J. B., “Efficacy of rhBMP-2 loaded PCL/PLGA/β-TCP guided bone regeneration membrane fabricated by 3D printing technology for reconstruction of calvaria defects in rabbit", Biomedical Materials, Vol. 9, No. 6, (2014), 065006. https://doi.org/10.1088/1748-6041/9/6/065006
  63. Yildirim, E. D., Yin, X., Nair, K., Sun, W., "Fabrication, characterization, and biocompatibility of single‐walled carbon nanotube‐reinforced alginate composite scaffolds manufactured using freeform fabrication technique", Journal of Biomedical Materials Research, Part B: Applied Biomaterials, Vol. 87, No. 2, (2008), 406-414. https://doi.org/10.1002/jbm.b.31118
  64. Chen, W., Chen, S., Morsi, Y., El-Hamshary, H., El-Newhy, M., Fan, C., Mo, X., "Superabsorbent 3D scaffold based on electrospun nanofibers for cartilage tissue engineering", ACS Applied Materials & Interfaces, Vol. 8, No. 37, (2016), 24415-24425. https://doi.org/10.1021/acsami.6b06825
  65. Wolf, M. F., Coleman, K. P., Rankin, E. A., Lewerenz, G. M., "In vitro assessment of cell and tissue compatibility", Biomaterials Science, Academic Press, (2020), 851-868. https://doi.org/10.1016/B978-0-12-816137-1.00057-X
  66. Nikbakht, M., Karbasi, S., Rezayat, S. M., Tavakol, S., Sharifi, E., "Evaluation of the effects of hyaluronic acid on poly (3-hydroxybutyrate)/chitosan/carbon nanotubes electrospun scaffold: Structure and mechanical properties", Polymer-Plastics Technology and Materials, Vol. 58, No. 18, (2019), 2031-2040. https://doi.org/10.1080/25740881.2019.1602645
  67. Hashemibeni, B., Valiani, A., Esmaeli, M., Kazemi, M., Aliakbari, M., Iranpour, F. G., "Comparison of the efficacy of piascledine and transforming growth factor β1 on chondrogenic differentiation of human adipose-derived stem cells in fibrin and fibrin-alginate scaffolds", Iranian Journal of Basic Medical Sciences, Vol. 21, No. 2, (2018), 212. https://doi.org/10.22038/IJBMS.2018.24693.6136
  68. Wang, K., Lin, S., Nune, K. C., Misra, R. D., "Chitosan-gelatin-based microgel for sustained drug delivery", Journal of Biomaterials Science, Polymer Edition, Vol. 27, No. 5, (2016), 441-453. https://doi.org/10.1080/09205063.2016.1143673
  69. Nikbakht, M., Karbasi, S., Rezayat, S. M., "Biological evaluation of the effects of Hyaluronic acid on Poly (3-hydroxybutyrate) based electrospun nanocomposite scaffolds for cartilage tissue engineering application", Materials Technology, Vol. 35, No. 3, (2020), 141-151. https://doi.org/10.1080/10667857.2019.1659535
  70. Al-Afify, A. S., El-Akabawy, G., El-Sherif, N. M., El-Safty, F. E., El-Habiby, M. M., "Avocado soybean unsaponifiables ameliorates cartilage and subchondral bone degeneration in mono-iodoacetate-induced knee osteoarthritis in rats", Tissue and Cell, Vol. 52, (2018), 108-115. https://doi.org/10.1016/j.tice.2018.05.001
  71. Bastian, F., Stelzmüller, M. E., Kratochwill, K., Kasimir, M. T., Simon, P., Weigel, G., "IgG deposition and activation of the classical complement pathway involvement in the activation of human granulocytes by decellularized porcine heart valve tissue", Biomaterials, Vol. 29, No. 12, (2008), 1824-1832. https://doi.org/10.1016/j.biomaterials.2008.01.005
  72. Cho, Y. S., Hong, M. W., Quan, M., Kim, S. Y., Lee, S. H., Lee, S. J., Kim, Y. Y., Cho, Y. S., "Assessments for bone regeneration using the polycaprolactone SLUP (salt‐leaching using powder) scaffold", Journal of Biomedical Materials Research Part A, Vol. 105, No. 12, (2017), 3432-3444. https://doi.org/10.1002/jbm.a.36196
  73. Kumar, A., Lee, Y., Kim, D., Rao, K. M., Kim, J., Park, S., Haider, A., Han, S. S., "Effect of crosslinking functionality on microstructure, mechanical properties, and in vitro cytocompatibility of cellulose nanocrystals reinforced poly (vinyl alcohol)/sodium alginate hybrid scaffolds", International Journal of Biological Macromolecules, Vol. 95, (2017), 962-973. https://doi.org/10.1016/j.ijbiomac.2016.10.085
  74. Zarei, M., Karbasi, S., "Evaluation of the effects of multiwalled carbon nanotubes on electrospun poly (3-hydroxybutirate) scaffold for tissue engineering applications", Journal of Porous Materials, Vol. 25, No. 1, (2018), 259-272. https://doi.org/10.1007/s10934-017-0439-5
  75. Silverstein, R. M., Bassler, G. C., "Spectrometric identification of organic compounds", Journal of Chemical Education, Vol. 39, No. 11, (1962), 546. https://doi.org/10.1021/ed039p546
  76. Wu, J., Kong, T., Yeung, K. W., Shum, H. C., Cheung, K. M., Wang, L., To, M. K. T., "Fabrication and characterization of monodisperse PLGA–alginate core–shell microspheres with monodisperse size and homogeneous shells for controlled drug release", Acta Biomaterialia, Vol. 9, No. 7, (2013), 7410-7419. https://doi.org/10.1016/j.actbio.2013.03.022
  77. Karkeh-Abadi, F., Saber-Samandari, S., Saber-Samandari, S., "The impact of functionalized CNT in the network of sodium alginate-based nanocomposite beads on the removal of Co (II) ions from aqueous solutions", Journal of Hazardous Materials, Vol. 312, (2016), 224-233. https://doi.org/10.1016/j.jhazmat.2016.03.074
  78. Lawrie, G., Keen, I., Drew, B., Chandler-Temple, A., Rintoul, L., Fredericks, P., Grøndahl, L., "Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS", Biomacromolecules, Vol. 8, No. 8, (2007), 2533-2541. https://doi.org/10.1021/bm070014y
  79. Kim, M. S., Kim, G., "Three-dimensional electrospun polycaprolactone (PCL)/alginate hybrid composite scaffolds", Carbohydrate Polymers, Vol. 114, (2014), 213-221. https://doi.org/10.1016/j.carbpol.2014.08.008
  80. Gillies, E. R., Frechet, J. M., "Dendrimers and dendritic polymers in drug delivery", Drug Discovery Today, Vol. 10, No. 1, (2005), 35-43. https://doi.org/10.1016/S1359-6446(04)03276-3
  81. Gaharwar, A. K., Peppas, N. A., Khademhosseini, A., "Nanocomposite hydrogels for biomedical applications", Biotechnology and Bioengineering, Vol. 111, No. 3, (2014), 441-453. https://doi.org/10.1002/bit.25160
  82. Bibi, A., Rehman, S. U., Yaseen, A., "Alginate-nanoparticles composites: Kinds, reactions and applications", Materials Research Express, Vol. 6, No. 9, (2019), 092001. https://doi.org/10.1088/2503-1591/ab2016
  83. Seda Kehr, N., Riehemann, K., "Controlled cell growth and cell migration in periodic mesoporous organosilica/alginate nanocomposite hydrogels", Advanced Healthcare Materials, Vol. 5, No. 2, (2016), 193-197. https://doi.org/10.1002/adhm.201500638
  84. Douglas, K. L., Piccirillo, C. A., Tabrizian, M., "Effects of alginate inclusion on the vector properties of chitosan-based nanoparticles", Journal of Controlled Release, Vol. 115, No. 3, (2006), 354-361. https://doi.org/10.1016/j.jconrel.2006.08.021
  85. Fernandes, C., Suares, D., Dhawan, V., Prabhu, P., "Nanostructured polymer scaffolds for tissue engineering technology", Fundamentals of Nanoparticles, Elsevier, (2018), 451-483. https://doi.org/10.1016/B978-0-323-51255-8.00015-X
  86. O'brien, F. J., "Biomaterials & scaffolds for tissue engineering", Materials Today, Vol. 14, No. 3, (2011), 88-95. https://doi.org/10.1016/S1369-7021(11)70058-X
  87. Almeida, H. V., Eswaramoorthy, R., Cunniffe, G. M., Buckley, C. T., O’brien, F. J., Kelly, D. J., "Fibrin hydrogels functionalized with cartilage extracellular matrix and incorporating freshly isolated stromal cells as an injectable for cartilage regeneration", Acta Biomaterialia, Vol. 36, (2016), 55-62. https://doi.org/10.1016/j.actbio.2016.03.008
  88. Shekaran, A., Lam, A., Sim, E., Jialing, L., Jian, L., Wen, J. T., Chan, J. K., Choolani, M., Reuveny, S., Birch, W., Oh, S., "Biodegradable ECM-coated PCL microcarriers support scalable human early MSC expansion and in vivo bone formation", Cytotherapy, Vol. 18, No. 10, (2016), 1332-1344. https://doi.org/10.1016/j.jcyt.2016.06.016
  89. Goudarzi, R., Reid, A., McDougall, J. J., "Evaluation of the novel avocado/soybean unsaponifiable Arthrocen to alter joint pain and inflammation in a rat model of osteoarthritis". PLoS One, Vol. 13, No. 2, (2018), e0191906. https://doi.org/10.1371/journal.pone.0191906
  90. Hashemibeni, B., Ansar, M. M., Kabiri, A., Goharian, M., Nasiri, P., Aliakbari, M., Ghorbani, M., "The effects of TGF-β3 on the proliferation and function of encapsulated costal cartilage chondrocytes in alginate scaffold", Journal of Applied Biotechnology Reports, Vol. 6, No. 2, (2019), 55-59. https://doi.org/10.29252/JABR.06.02.03
  91. Cassie, A. B., Baxter, S., "Wettability of porous surfaces", Transactions of the Faraday Society, Vol. 40, (1944), 546-551. https://doi.org/10.1039/TF9444000546
  92. Szymański, T., Mieloch, A. A., Richter, M., Trzeciak, T., Florek, E., Rybka, J. D., Giersig, M., "Utilization of carbon nanotubes in manufacturing of 3D cartilage and bone scaffolds", Materials, Vol. 13, No. 18, (2020), 4039. https://doi.org/10.3390/ma13184039
  93. Rajagopal, K., Dutt, V., Manickam, A. S., Madhuri, V., "Chondrocyte source for cartilage regeneration in an immature animal: Is iliac apophysis a good alternative?", Indian Journal of Orthopaedics, Vol. 46, No. 4, (2012), 402-406. https://dx.doi.org/10.4103%2F0019-5413.98828