نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشجوی دکتری، پژوهشکده فناوری نانو و مواد پیشرفته، پژوهشگاه مواد و انرژی، کرج، ایران

2 استادیار، پژوهشکده فناوری نانو و مواد پیشرفته، پژوهشگاه مواد و انرژی، کرج، ایران

3 استاد، پژوهشکده فناوری نانو و مواد پیشرفته، پژوهشگاه مواد و انرژی، کرج، ایران

4 استادیار، پژوهشکده فناوری نانو و مواد پیشرفته، پژوهشگاه مواد و انرژی، کرج، ایران.

5 استادیار، دانشکده مهندسی مواد، دانشگاه صنعتی اصفهان، اصفهان، ایران

چکیده

در پژوهش حاضر، از مدلی ذره‌ای، با در نظر گرفتن تمام بر‌هم‌کنش‌های بین‌ذره‌ای، برای شبیه‌سازی فرایند لایه‌نشانی الکتروفورتیک استفاده شده است. مدل ذکر شده برای بررسی اثر پتانسیل سطحی (زتا) ذرات در ساختار و چیدمان ذرات در لایه نشست با بررسی دقیق ذرات در مقیاس مزو استفاده شده است. شبیه‌سازی با چهار مقدار متفاوت پتانسیل زتای ذرات mV {۱۰۰- ،۵۰- ،۲۵- ،۵-} انجام شده است که نتایج نشان می‌دهند پتانسیل زتای ذرات به‌منزله فاکتوری مهم، که برهم‌کنش بین ذرات را تعیین می‌کند، در ساختار و فشردگی لایه نشست تأثیرگذار است. علی‌رغم کاهش جزئی ضخامت و دانسیته لایه نشست، با افزایش پتانسیل زتا تا mV ۵۰، درجه‌ نظم ساختاری در لایه نشست افزایش می‌یابد. دلیل افزایش برهم‌کنش، دافعه الکترواستاتیک است که باعث رانش ذرات در حال نشست به مکان‌های منظم در لایه نشست می‌شود. در پتانسیل زتای mV ۱۰۰ به‌دلیل دافعه بسیار بالای ذرات، که مانع از نزدیک‌شدن ذرات به یکدیگر می‌شود، جایابی ذرات در مکان‌های منظم مجدداً کاهش می‌یابد. نتایج این پژوهش و استفاده از مدل مذکور برای تنظیم و انتخاب پارامتر فرایندی پتانسیل زتا در لایه‌نشانی الکتروفورتیک راهگشا است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Simulation of Electrophoretic Deposition of Ceramic Nanoparticles Using a Modified Particle-Based Model: Considering the Effect of the Surface Potential of Particles

نویسندگان [English]

  • Setare Dodange 1
  • Reza Riahifar 2
  • Babak Raeisi 3
  • Maziar Sahba Yaghmaee 4
  • Amir Alhaji 5

1 Ph. D. Student, Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran

2 Assistant Professor, Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran

3 Professor, Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran

4 Assistant Professor, Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran.

5 Assistant Professor, Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran

چکیده [English]

In this study, a particle-based model incorporating all inter-particle interactions was employed to simulate the electrophoretic deposition process. This model was also used to investigate the effect of the surface (zeta) potential of particles on the structure and configuration of particles in the deposited layer at the mesoscale. Simulations were then performed with four different values of zeta potential of particles {-5, -25, -50, -100} mV, the results of which showed that zeta potential as an important factor in determining the interaction between particles had an impact on the deposit structure and packing. Upon increasing the zeta potential up to 50 mV, the degree of order increased while the thickness and density of the deposited layer slightly decreased. Increasing the electrostatic repulsion made depositing particles push into the ordered sites in the deposited layer. Due to the high particle repulsion that prevents particles from approaching each other at the zeta potential of 100 mV, incorporation of the particles in the ordered locations decreased again. The findings of this study along with application of the proposed model can help tune the structure and packing of the resulting deposit by varying the zeta potential of particles.

کلیدواژه‌ها [English]

  • Electrophoretic Deposition
  • Particle-Based Model
  • Colloidal Suspension
  • Zeta Potential
  1. Obregón, S., Amor, G., Vázquez, A., "Electrophoretic deposition of photocatalytic materials", Advances in Colloid and Interface Science, Vol. 269, (2019), 236-255. https://doi.org/10.1016/j.cis.2019.05.003
  2. Atiq Ur Rehman, M., Chen, Q., Braem, A., Shaffer, M. S. P., Boccaccini, A. R., "Electrophoretic deposition of carbon nanotubes: Recent progress and remaining challenges", International Materials Reviews, Vol. 66, No. 8, (2020), 533-562. https://doi.org/10.1080/09506608.2020.1831299
  3. Chavez-Valdez, A., Shaffer, M. S. P., Boccaccini, A. R., "Applications of graphene electrophoretic deposition: A review", Journal of Physical Chemistry B, Vol. 117, No. 6, (2013), 1502-1515. https://doi.org/10.1021/jp3064917
  4. Boccaccini, A. R., Keim, S., Ma, R., Li, Y., Zhitomirsky, I., "Electrophoretic deposition of biomaterials", Journal of the Royal Society Interface, Vol. 7, No. (suppl_5), (2010), S581-S613. https://doi.org/10.1098/rsif.2010.0156.focus
  5. Sikkema, R., Baker, K., Zhitomirsky, I., "Electrophoretic deposition of polymers and proteins for biomedical applications", Advances in Colloid and Interface Science, Vol. 284, (2020), 102272. https://doi.org/10.1016/j.cis.2020.102272
  6. Besra L., Liu, M., "A review on fundamentals and applications of electrophoretic deposition (EPD)", Progress in Materials Science, Vol. 52, No. 1, (2007), 1-61. https://doi.org/10.1016/j.pmatsci.2006.07.001
  7. Ghashghaie, S., Marzbanrad, E., Raissi, B., Zamani, C., Riahifar, R., "Effect of low frequency electric field parameters on chain formation of ZnO nanoparticles for gas sensing applications", Journal of the American Ceramic Society, Vol. 95, No. 6, (2012), 1843-1850. https://doi.org/10.1111/j.1551-2916.2012.05133.x
  8. Fatisson, M., Domingos, R. F., Wilkinson, K. J., Tufenkji, N., "Deposition of TiO2 nanoparticles onto silica measured using a quartz crystal microbalance with dissipation monitoring", Langmuir, Vol. 25, No. 11, (2009), 6062–6069. https://pubs.acs.org/doi/10.1021/la804091h
  9. Dor, S., Rühle, S., Ofir, A., Adler, M., Grinis, L., Zaban, A., "The influence of suspension composition and deposition mode on the electrophoretic deposition of TiO2 nanoparticle agglomerates", Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 342, No. 1-3, (2009), 70-75. https://doi.org/10.1016/j.colsurfa.2009.04.009
  10. Escribano, J. A., Gonzalo-Juan, I., Sanchez-Herencia, A. J., Ferrari, B., "AFM characterization of the nanoparticles arrangement by electrophoretic deposition", Key Engineering Materials, Vol. 507, (2012), 61-66. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/KEM.507.61
  11. Cerbelaud, M., Videcoq, A., Abélard, P., Pagnoux, C., Rossignol, F., Ferrando, R., "Self-assembly of oppositely charged particles in dilute ceramic suspensions: Predictive role of simulations", Soft Matter, Vol. 6, No. 2, (2010), 370-382. https://doi.org/10.1039/B908671D
  12. Barrett, D. J., Linley, M. D., Best, S. M., Cameron, R. E., "Fabrication of free standing collagen membranes by pulsed-electrophoretic deposition", Biofabrication, Vol. 11, No. 4, (2019), 045017. https://iopscience.iop.org/article/10.1088/1758-5090/ab331d/meta
  13. Moritz K., Moritz, T., "ZrO2 ceramics with aligned pore structure by EPD and their characterisation by X-ray computed tomography", Journal of the European Ceramic Society, Vol. 30, No. 5, (2010), 1203-1209. http://doi.org/10.1016/J.JEURCERAMSOC.2009.05.034
  14. Pascall, A. J., Sullivan, K. T., Kuntz, J. D., "Morphology of electrophoretically deposited films on electrode strips", The Journal of Physical Chemistry B, Vol. 117, No. 6, (2013), 1702-1707. http://doi.org/10.1021/jp306447n
  15. Keller, F., Nirschl, H., Dörfler, W., Woldt, E., "Efficient numerical simulation and optimization in electrophoretic deposition processes", Journal of the European Ceramic Society, Vol. 35, No. 9, (2015), 2619-2630. http://doi.org/10.1016/J.JEURCERAMSOC.2015.02.031
  16. Hong, C. W., "New concept for simulating particle packing in colloidal forming processes", Journal of the American Ceramic Society, Vol. 80, No. 10, (1997), 2517-2524. http://doi.org/10.1111/J.1151-2916.1997.TB03153.X
  17. Hong, C. W., "From long-range interaction to solid-body contact between colloidal surfaces during forming", Journal of the European Ceramic Society, Vol. 18, No. 14, (1998), 2159-2167. http://doi.org/ 10.1016/S0955-2219(98)00115-0
  18. Dodange, S., Riahifar, R., Raissi, B., Yaghmaee, M. S., Alhaji, A., "Heterocoagulation simulation of nano alumina and silica particle dispersion using discrete element method", International Journal of Materials Research, Vol. 113, No. 4, (2022), 259-270. http://doi.org/10.1515/IJMR-2020-8123
  19. Cordelair J., Greil, P., "Discrete element modeling of solid formation during electrophoretic deposition", Journal of Materials Science, Vol. 39, No. 3, (2004), 1017-1021. http://doi.org/10.1023/B:JMSC.0000012935.48724.7f
  20. Park, J. S., Saintillanb, D., "Direct numerical simulations of electrophoretic deposition of charged colloidal suspensions", Key Engineering Materials, Vol. 507, (2012), 47-51. https://doi.org/10.4028/www.scientific.net/KEM.507.47
  21. Giera, B., Zepeda-Ruiz, L. A., Pascall, A. J., Kuntz, J. D., Spadaccini, C. M., Weisgraber, T. H., "Mesoscale particle-based model of electrophoresis", Journal of the Electrochemical Society, Vol. 162, No. 11, (2015), D3030-D3035. http://doi.org/10.1149/2.0161511jes
  22. Ma, J., Cheng, W., "Deposition and packing study of sub-micron PZT ceramics using electrophoretic deposition", Materials Letters, Vol. 56, No. 5, (2002), 721-727. http://doi.org/10.1016/S0167-577X(02)00602-X
  23. Flores P., Lankarani, H. M., Contact Force Models for Multibody Dynamics, 1st edition, Springer International Publishing, (2016). https://link.springer.com/book/10.1007/978-3-319-30897-5
  24. Thornton, C., Granular Dynamics, Contact Mechanics and Particle System Simulations: A DEM Study, Springer International Publishing, (2015). https://doi.org/10.1007/978-3-319-18711-2
  25. Cundall, P. A., Strack, O. D. L., "A discrete numerical model for granular assemblies", Géotechnique, Vol. 29, No. 1, (1979), 47-65. https://doi.org/10.1680/geot.1979.29.1.47
  26. Hertz, H., "Über die Berührung fester elastischer Körper", Journal für die reine und angewandte Mathematik, Vol. 92, (1881), 156-171. https://www.degruyter.com/journal/key/crll/html?lang=de
  27. Marshall, J. S., Li, S., Adhesive Particle Flow: A Discrete-Element Approach, Cambridge University Press, (2012). https://www.cambridge.org/ir/universitypress/subjects/engineering/thermal-fluids-engineering/adhesive-particle-flow-discrete-element-approach?format=HB
  28. Derjaguin, B. V., Muller, V. M., Toporov, Y. P., "Effect of contact deformations on the adhesion of particles", Journal of Colloid and Interface Science, Vol. 53, No. 2, (1975), 314-326. https://doi.org/10.1016/0021-9797(75)90018-1
  29. Israelachvili, J. N., Intermolecular and Surface Forces, 3rd Edition, Elsevier, (2011). https://doi.org/10.1016/C2011-0-05119-0
  30. Ringl C., Urbassek, H. M., "A LAMMPS implementation of granular mechanics: Inclusion of adhesive and microscopic friction forces", Computer Physics Communications, Vol. 183, No. 4, (2012), 986-992. https://doi.org/10.1016/j.cpc.2012.01.004
  31. Thorsten, P., Schwager, T., Computational Granular Dynamics, Springer Berlin, Heidelberg, (2005). https://doi.org/10.1007/3-540-27720-X
  32. Derjaguin, B., Landau, L., "Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes", Progress in Surface Science, Vol. 43, No. 1-4, (1993), 30-59. https://doi.org/10.1016/0079-6816(93)90013-L
  33. Verwey, E. J. W., "Theory of the stability of lyophobic colloids", The Journal of Physical Chemistry, Vol. 51, No. 3, (1947), 631-636. https://doi.org/10.1021/j150453a001
  34. Elimelech, M., Gregory, J., Jia, X., Particle Deposition and Aggregation, edited by Williams, R. A., Elsevier, (1995). https://doi.org/10.1016/B978-0-7506-7024-1.X5000-6
  35. Kumar, A., Higdon, J. J. L., "Origins of the anomalous stress behavior in charged colloidal suspensions under shear", Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, Vol. 82, No. 5, (2010), 051401. http://doi.org/10.1103/PhysRevE.82.051401
  36. Ball, R. C., Melrose, J. R., "A simulation technique for many spheres in quasi-static motion under frame-invariant pair drag and Brownian forces", Physica A: Statistical Mechanics and its Applications, Vol. 247, No. 1-4, (1997), 444-472. http://doi.org./10.1016/S0378-4371(97)00412-3
  37. Bolintineanu, D. S., Grest, G. S., Lechman, J. B., Pierce, F., Plimpton, S. J., Schunk, P. R., "Particle dynamics modeling methods for colloid suspensions", Computational Particle Mechanics, Vol. 1, No. 3, (2014), 321-356. http://doi.org/10.1007/s40571-014-0007-6
  38. Bybee, M. D., Hydrodynamic Simulations of Colloidal Gels: Microstructure, Dynamics, and Rheology, University of Illinois at Urbana-Champaign, (2009). https://www.proquest.com/openview/9325a8339f3611daa5f10258be49dbda/1?pq-origsite=gscholar&cbl=18750
  39. Giera, B., Zepeda-Ruiz, L. A., Pascall, A. J., Kuntz, J. D., Spadaccini, C. M., Weisgraber, T. H., "Mesoscale particle-based model of electrophoresis", Journal of the Electrochemical Society, Vol. 162, No. 11, (2015), D3030-D3035. http://doi.org/10.1149/2.0161511jes
  40. Plimpton, S., "LAMMPS documentation". Available at: https://docs.lammps.org/Manual.html
  41. Xu, H., Shapiro, I. P., Xiao, P., "The influence of pH on particle packing in YSZ coatings electrophoretically deposited from a non-aqueous suspension", Journal of the European Ceramic Society, Vol. 30, No. 5, (2010), 1105-1114. http://doi.org/10.1016/J.JEURCERAMSOC.2009.07.021
  42. Krüger, H. G., Knote, A., Schindler, U., Kern, H., Boccaccini, A. R., "Composite ceramic-metal coatings by means of combined electrophoretic deposition and galvanic methods", Journal of Materials Science, Vol. 39, No. 3, (2004), 839-844. http://doi.org/10.1023/B:JMSC.0000012912.96350.d2
  43. Faken D., Jónsson, H., "Systematic analysis of local atomic structure combined with 3D computer graphics", Computational Materials Science, Vol. 2, No. 2, (1994), 279-286. http://doi.org/10.1016/0927-0256(94)90109-0
  44. Trau, M., Seville, D. A., Aksay, I. A., "Field-induced layering of colloidal crystals", Science, Vol. 272, No. 5262, (1996), 706-709. http://doi.org/10.1126/SCIENCE.272.5262.706
  45. Honeycutt J. D., Andersen, H. C., "Molecular dynamics study of melting and freezing of small Lennard-Jones clusters", The Journal of Physical Chemistry, Vol. 91, No. 19, (1987), 4950-4963. https://doi.org/10.1021/j100303a014