نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشیار، گروه مهندسی مواد، دانشکده فنی و مهندسی، دانشگاه ملایر، ملایر، همدان، ایران

2 کارشناسی، گروه مهندسی مواد، دانشکده فنی و مهندسی، دانشگاه شهرکرد، شهرکرد، چهارمحال و بختیاری، ایران

3 استادیار، گروه مهندسی مواد، دانشکده فنی و مهندسی، دانشگاه شهرکرد، شهرکرد، چهارمحال و بختیاری، ایران

چکیده

در بین مواد فعال مختلف، هیدروکسید نیکل یکی از مستعدترین و با­قابلیت­ ترین مواد شبه­ خازنی است؛ ولی عملکرد الکتروشیمیایی آن به ­دلیل هدایت الکتریکی پایین و پایداری ضعیف محدود شده است. برای غلبه بر این مشکل، راهکارهای متعددی ازجمله کامپوزیت کردن آن با مواد هادی الکتریسیته مانند ذرات فلزی، انواع مواد کربنی و بسپارهای رسانا، وجود دارد. همچنین، حذف چسب بسپار نارسانای مورد استفاده در ساخت الکترود می ­تواند سبب کاهش مقاومت داخلی الکترود شده و درنتیجه منجر به بهبود عملکرد ذخیره ­سازی انرژی در آن شود. در این تحقیق، از یک روش نو، ساده و کارآمد برای تهیه الکترود بدون چسب هیدروکسید نیکل استفاده شده است که شامل رسوب نشانی شیمیایی لایه ­به ­لایه نانوذرات هیدروکسید نیکل با فاز بتا بر سطح فوم نیکل می­ باشد.    مشخصه ­یابی ساختار و ریخت­ شناسی سطحی الکترود تهیه ‌شده با استفاده از پراش پرتوی ایکس، طیف‌سنجی مادون‌قرمز تبدیل فوریه (FTIR) و میکروسکوپ الکترونی روبشی گسیل میدانی (FESEM) مورد بررسی قرار گرفت. همچنین، عملکرد ذخیره ­سازی انرژی الکترود ابرخازنی تهیه‌ شده با استفاده از روش ­های ولتامتری چرخ ه­ای و شارژ-تخلیه جریان ثابت مورد ارزیابی قرار گرفت. به‌طورخلاصه، الکترود تهیه‌ شده دارای ظرفیت ویژه 767 فاراد بر گرم در چگالی جریان تخلیه 1 آمپر بر گرم و پایداری چرخ ه­ای 6/90 درصد پس از 1000 چرخه می­ باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Pseudocapacitive Performance of Binder-Free Nickel Hydroxide Electrode Prepared by Layer-by-Layer Chemical Deposition on Nickel Foam

نویسندگان [English]

  • Mahdi Kazazi 1
  • Javad Rahimi Junaqani 2
  • Mehdi Delshad Chermahini 3

1 Associate Professor, Department of Materials Engineering, Faculty of Engineering, Malayer University, Malayer, Hamedan, Iran

2 B. Sc., Department of Materials Engineering, Faculty of Engineering, Shahrekord University, Shahrekord, Chaharmahal and Bakhtiari, Iran

3 Assistant Professor, Department of Materials Engineering, Faculty of Engineering, Shahrekord University, Shahrekord, Chaharmahal and Bakhtiari, Iran

چکیده [English]

Among different active materials, nickel hydroxide is one of the most promising pseudocapacitive materials; however, its electrochemical performance is notably restricted because of its low conductivity and weak stability. To overcome these drawbacks, several solutions were suggested including making it composite with electrically conductive materials such as metal particles, various carbon materials, and conductive polymers. In addition, removing the insulating polymer binder used in the electrode prepration can reduce the internal resistance of the electrode, thus leading to improvement in its energy storage performance. In this research, a novel, facile, and efficient approach was developed to prepare a binder-free nickel hydroxide electrode, which includes the layer-by-layer chemical deposition of nickel hydroxide nanoparticles with β-phase structure on the nickel foam. The structural characterization and surface morphology of the as-prepared electrode was investigated using X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and Field Emission Scanning Electron Microscopy (FESEM). Further, the energy storage performance of the prepared supercapacitor electrode was evaluated using cyclic voltammetry and galvanostatic charge-discharge techniques. The prepared electrode showed a specific capacitance of 767 F g-1 at the discharge current density of 1 A g-1 and cyclic stability of 91.4 % after 1000 cycles.

کلیدواژه‌ها [English]

  • Supercapacitor
  • Binder Free Electrode
  • Nickel Hydroxide
  • Electrochemical Performance
  1. Kazazi, M., "High-performance electrode based on electrochemical polymerization of polypyrrole film on electrophoretically deposited CNTs conductive framework for supercapacitors", Solid State Ionics, Vol. 336, (2019), 80-86. https://doi.org/10.1016/j.ssi.2019.03.021
  2. Simon, P., Gogotsi, Y., "Materials for electrochemical capacitors", Nature Materials, Vol. 7, No. 11, (2008), 845-854. https://doi.org/10.1038/nmat2297
  3. Zhu, Y. W., Murali, S., Stoller, M. D., Ganesh, K. J., Cai, W. W., Ferreira, P. J., Pirkle, A., Wallace, R. M., Cychosz, K. A., Thommes, M., Su, D., Stach, E. A., Ruoff, R. S., "Carbon-based supercapacitors produced by activation of graphene", Science, Vol. 332, No. 6037, (2011), 1537-1541. https://doi.org/10.1126/science.1200770
  4. Kazazi, M., "High-performance electrode based on electrochemical polymerization of polypyrrole film on electrophoretically deposited CNTs conductive framework for supercapacitors", Solid State Ionics, Vol. 336, (2019), 80-86. https://doi.org/10.1016/j.ssi.2019.03.021
  5. Zhang, K., Zhang, L. L., Zhao, X. S., Wu, J., "Graphene/polyaniline nanofiber composites as supercapacitor electrodes", Chemistry of Materials, Vol. 22, No. 4, (2010), 1392-1401. https://doi.org/10.1021/cm902876u
  6. Frackowiak, E., Metenier, K., Bertagna, V., Beguin, F., "Supercapacitor electrodes from multiwalled carbon nanotubes", Applied Physics Letters, Vol. 77, (2000), 2421-2423. https://doi.org/10.1063/1.1290146
  7. Cottineau, T., Toupin, M., Delahaye, T., Brousse, T., Belanger, D., "Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors", Applied Physics A: Materials Science & Processing, Vol. 82, (2006), 599-606. https://doi.org/10.1007/s00339-005-3401-3
  8. Yuan, C., Wu, H. B., Xie, Y., Lou, X. W. D., "Mixed transition-metal oxides: Design, synthesis, and energy-related applications", Angewandte Chemie International Edition, Vol. 53, No. 6, (2014), 1488-1504. https://doi.org/10.1002/anie.201303971
  9. Mazinani, B., Kazazi, M., Mobarhan, G., Shokouhimehr, M. R., "The combustion synthesis of Ag-doped MnCo2O4 nanoparticles for supercapacitor applications", The Journal of The Minerals, Metals & Materials Society, Vol. 71, (2019), 1499-1506. https://doi.org/10.1007/s11837-019-03387-x
  10. Faryabi, M., Kazazi, M., "Electrochemical deposition of manganese hexacyanoferrate nanoparticles on a graphite substrate for supercapacitor application", Journal of Advanced Materials and Technologiesn (JAMT), Vol. 8, No. 3, (2019) , 13-20. (In Farsi). https://doi.org/10.30501/JAMT.2019.93225
  11. Parvizi, P., Kazazi, M., "Binder-free copper hexacyanoferrate electrode prepared by pulse galvanostatic electrochemical deposition for aqueous-based Al-ion batteries", Advanced Ceramics Progress (ACERP), Vol. 4, No. 2, (2018), 27-31. https://doi.org/10.30501/ACP.2018.91122
  12. Kazazi, M., Sedighi, A. R., Mokhtari, M. A., "Pseudocapacitive performance of electrodeposited porous Co3O4 film on electrophoretically modified graphite electrodes with carbon nanotubes", Applied Surfuce Science, Vol. 441, (2018), 251-257. https://doi.org/10.1016/j.apsusc.2018.02.054
  13. Zou, Y. Q., Wang, Y., "NiO nanosheets grown on graphene nanosheets as superior anode materials for Li-ion batteries", Nanoscale, Vol. 3, No. 6, (2011), 2615-2620. https://doi.org/10.1039/c1nr10070j
  14. Yang, G. W., Xu, C. L., Li, H. L., "Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance", Chemical Communications, Vol. 48, (2008), 6537-6539. https://doi.org/10.1039/B815647F
  15. Li, B. J., Ai, M., Xu, Z., "Mesoporous β ̵Ni (OH)₂ synthesis and enhanced electrochemical performance", Chemical Communications, Vol. 46, No. 34, (2010), 6267-6269. https://doi.org/10.1039/C0CC00155D
  16. Xie, L., Hao, J. G., Chen, H. Q., Li, Z. X., Ge, S. Y., Mi, Y., Yang, K., Lu, K. Q., "Recent advances of nickel hydroxide-based cocatalysts in heterogeneous photocatalysis", Catalysis Communications, Vol. 162, (2022), 106371. https://doi.org/10.1016/j.catcom.2021.106371
  17. Chakrabarty, S., Offen-Polak, I., Burshtein, T. , Farber, E. M., Kornblum, L., Eisenberg, D., "Urea oxidation electrocatalysis on nickel hydroxide: The role of disorder", Journal of Solid State Electrochemistry, Vol. 25, No. 1, (2021), 159-171. https://doi.org/10.1007/s10008-020-04744-6
  18. Ash, B., Nalajala, V. S., Popuri, A. K., Subbaiah, T., Minakshi, M., "Perspectives on nickel hydroxide electrodes suitable for rechargeable batteries: Electrolytic vs. chemical synthesis routes", Nanomaterials (Basel), Vol. 10, No. 9, (2020), 1878. https://doi.org/10.3390/nano10091878
  19. Canevari, T. C., Cincotto, F. H., Landers, R., Machado, S. A. S., "Synthesis and characterization of α-nickel (II) hydroxide particles on organic-inorganic matrix and its application in a sensitive electrochemical sensor for vitamin D determination", Electrochimica Acta, Vol. 147, (2014), 688-695. https://doi.org/10.1016/j.electacta.2014.10.012
  20. Xu, L., Ding, Y. S., Chen, C. H., Zhao, L., Rimkus, C., Joesten, R., Suib, S. L., "3D flowerlike α-nickel hydroxide with enhanced electrochemical activity synthesized by microwave-assisted hydrothermal method", Chemistry of Materials, Vol. 20, No. 1, (2008), 308-316. https://doi.org/10.1021/cm702207w
  21. Szytula, A., Murasik, A., Balanda, M., "Neutron diffraction study of Ni (OH)2", Physica Status Solidi B, Vol. 43, No. 1, (1971), 125-128. https://doi.org/10.1002/pssb.2220430113
  22. Xia, D., Chen, H., Jiang, J., Zhang, L., Zhao, Y., Guo, D., Yu, J., "Facilely synthesized a phase nickel–cobalt bimetallic hydroxides: Tuning the composition for high pseudocapacitance", Electrochimica Acta, Vol. 156, (2015), 108-114. https://doi.org/10.1016/j.electacta.2015.01.018
  23. Klissurski, D. G., Uzunova, E. L., "Synthesis of nickel cobaltite spinel from coprecipitated nickel-cobalt hydroxide carbonate", Chemistry of Materials, Vol. 3, No. 6, (1991), 1060-1063. https://doi.org/10.1021/cm00018a021
  24. Gupta, V., Gupta, S., Miura, N., "Electrochemically synthesized nanocrystalline spinel thin film for high performance supercapacitor", Journal of Power Sources, Vol. 195, No. 11, (2010), 3757-3760. https://doi.org/10.1016/j.jpowsour.2009.12.059
  25. Nalage, S. R., Chougule, M. A., Sen, S., Joshi, P. B., Patil, V. B., "Sol–gel synthesis of nickel oxide thin films and their characterization", Thin Solid Films, Vol. 520, No. 15, (2012), 4835-4840. https://doi.org/10.1016/j.tsf.2012.02.072
  26. Fan, J., Mi, H., Xu, Y., Gao, B., "In situ fabrication of Ni (OH)2 nanofibers on polypyrrole-based carbon nanotubes for high-capacitance supercapacitors", Materials Research Bulletin, Vol. 48, No. 3, (2013), 1342-1345. https://doi.org/10.1016/j.materresbull.2012.12.040
  27. Hall, P. J., Mirzaeian, M., Fletcher, S. I., Sillars, F. B., Rennie, A. J., Shitta-Bey, G. O., Wilson, G., Cruden, A., Carter, R., "Energy storage in electrochemical capacitors: Designing functional materials to improve performance", Energy & Environmental Science, Vol 3, No. 9, (2010) 1238-1251. https://doi.org/10.1039/C0EE00004C
  28. Liu, H. B., Xiang, L., Jin, Y., "Hydrothermal modification and characterization of Ni(OH)2 with high discharge capability", Crystal Growth & Design, Vol. 6, No. 1, (2006), 283-286. https://doi.org/10.1021/CG050119P
  29. Kazazi, M., "Facile preparation of nanoflake-structured nickel oxide/carbon nanotube composite films by electrophoretic deposition as binder-free electrodes for high-performance pseudocapacitors", Current Applied Physics, Vol. 17, No. 2, (2017), 240-248. https://doi.org/10.1016/j.cap.2016.11.028
  30. Tao, Y., Ruiyi, L., Tingting, Y., Zaijun, L., "Nickel/cobalt layered double hydroxide hollow microspheres hydrangea-like morphology for high-performance supercapacitors", Electrochimica Acta, Vol. 152, (2015), 530-537. https://doi.org/10.1016/j.electacta.2014.08.149
  31. Yang, L., Zhu, J., Xiao, D., "Microemulsion-mediated hydrothermal synthesis of ZnSe and Fe-doped ZnSe quantum dots with different luminescence characteristics", RSC Advances, Vol. 2, No. 21, (2012), 8179-8188. https://doi.org/10.1039/C2RA21401F
  32. Iyyappan, E., Wilson, P., Sheela, K., Ramya, R., "Role of triton X-100 and hydrothermal treatment on the morphological features of nanoporous hydroxyapatite nanorods", Materials Science and Engineering: C, Vol. 63, (2016), 554-562. https://doi.org/10.1016/j.msec.2016.02.076
  33. Karnath, P. V., Dixit, M., Indira, L., Shukla, A. K., Kumar, V. G., Munichandraiah, N., "Stabilized ⍺ ̵ Ni(OH)₂ as electrode material for alkaline secondary cells", The Electrochemical Society, Vol. 141, No. 11, (1994), 2956-2959. https://doi.org/10.1149/1.2059264
  34. Pei, L., Zhang, X., Zhang, L., Zhang, Y., Xu, Y., "Solvent influence on the morphology and supercapacitor performance of the nickel oxide", Materials Letters, Vol. 162, (2016), 238-241. https://doi.org/10.1016/j.matlet.2015.10.029
  35. Farrokhi-Rad, M., Ghorbani, M., "Electrophoretic deposition of titania nanoparticles in different alcohols: Kinetics of deposition", Journal of the American Ceramic Society, Vol. 94, No. 8, (2011), 2354-2361. https://doi.org/10.1111/j.1551-2916.2011.04401.x