نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه فیزیک حالت جامد، دانشکده علوم پایه، دانشگاه مازندران، بابلسر، مازندران، ایران

2 دانشیار، گروه فیزیک حالت جامد، دانشکده علوم پایه، دانشگاه مازندران، بابلسر، مازندران، ایران

3 استادیار، گروه زیست‌شناسی سلولی و مولکولی، دانشکده علوم پایه، دانشگاه مازندران، بابلسر، مازندران، ایران

4 استادیار، گروه علوم گیاهی، دانشکده علوم پایه، دانشگاه مازندران، بابلسر، مازندران، ایران

چکیده

هدف از پژوهش حاضر ساخت نانوالیاف پلیمری کیتوزان و پلی‌وینیل‌الکل حاوی عصاره گیاه کاسنی به‌منظور ارزیابی خواص ضدباکتریایی آن است. گیاه کاسنی نیز توانایی خود را در تعدیل فعالیت و رشد باکتری‌ها با ارجاع به مقاله‌های متعدد منتشرشده آشکار می‌سازد. ازاین‌رو، عصاره گیاه کاسنی به میزان 1، 2 و 3 درصد به پیش‌ماده الیاف افزوده شد. درنهایت، ریخت‌شناسی و خاصیت ضدباکتریایی نانوالیاف حاصل بررسی شد. نتایج حاصل از میکروسکوپ الکترونی روبشی گسیل میدان (FESEM) گویای تشکیل الیاف یکنواخت است که، با افزایش میزان عصاره در نمونه، قطر الیاف از 144 نانومتر به 95 نانومتر کاهش می‌یابد. در طیف‌سنجی پراش انرژی پرتو ایکس (EDX) و آنالیز X-map، عناصر کربن، اکسیژن، نیتروژن، کلر، پتاسیم، سدیم و مس موجود در پیش‌ماده الیاف حاوی عصاره و توزیع یکنواخت آن‌ها تأیید شدند. در طیف‌سنجی مادون قرمز تبدیل فوریه (FT-IR)، گروه‌های عاملی و پیوندهای شیمیایی موجود در نانولیف‌های سنتزشده شناسایی می‌شوند. طبق نتایج مبتنی بر طیف‌سنجی فرابنفش - مرئی (UV-VIS)، یک گسیل در ناحیه فرابنفش با طول موج 263 نانومتر و دو گسیل در ناحیه فرابنفش و مرئی با طول موج‌های 270 و 372 نانومتر در طیف جذبی نانوالیاف به‌ترتیب فاقد و حاوی عصاره رؤیت شده است. بررسی خواص ضدباکتریایی در پژوهش حاضر مؤید آن است که، با افزایش میزان عصاره در نمونه، خاصیت ضدباکتریایی نانولیف‌های الکتروریسی‌شده علیه دو باکتری اشریشیاکلی و استافیلوکوکوس اورئوس افزایش می‌یابد. 

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Synthesis and Characterization of Chitosan/Poly (Vinyl Alcohol) Polymer Nanofibers Containing Chicory Extract by Electrospun Method and Evaluation of Its Antibacterial Properties

نویسندگان [English]

  • Fatemeh Hedayati Tabari 1
  • Habib Hamidinezhad 2
  • Mohammad Karimian 3
  • Ehsan Nazifi 4

1 Ph. D. Student, Department of Solid State Physics, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Mazandaran, Iran

2 Associate Professor, Department of Solid State Physics, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Mazandaran, Iran

3 Assistant Professor, Department of Cell and Molecular Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Mazandaran, Iran

4 Assistant Professor, Department of Plant Sciences, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Mazandaran, Iran

چکیده [English]

The primary objective of the current research is to produce polymeric nanofibers of chitosan and polyvinyl alcohol containing chicory plant extract and then evaluate their antibacterial effects. As remarked by numerous published articles, the chicory plant proved to be able to modulate the activity and growth of bacteria. For this reason, chicory plant extract was added to the fiber precursor in the amounts of 1, 2, and 3 %. Finally, the morphology and antibacterial properties of the resultant nanofibers were investigated. The results from Field Emission Scanning Electron Microscope (FESEM) confirmed the formation of uniform fibers whose diameters decreased from 144 nm to 95 nm with an increase in the amount of the extract in the sample. In addition, Energy Dispersive X-ray (EDX) and X-map analyses confirmed the presence of elements of carbon, oxygen, nitrogen, chlorine, potassium, sodium, and copper in the precursor of the fibers containing the extract and their uniform distribution. In this study, Fourier Transform Infrared Spectroscopy (FT-IR) helped identify the functional groups and chemical bonds in the synthesized nanofibers. According to the Ultraviolet-Visible thermometry (UV-VIS) results, one emission in the ultraviolet region with the wavelength of 263 nm and two emissions in the ultraviolet and visible regions with the wavelengths of 263 nm and 372 nm were observed in the absorption spectrum of nanofibers without and with the extract, respectively. examination of the antibacterial properties in the present study confirmed that upon increasing the amount of the extract in the sample, the antibacterial effect of the electrospun nanofibers would be intensified in exposure to both Escherichia coli and Staphylococcus aureus.

کلیدواژه‌ها [English]

  • Electrospinning
  • Nanofibers
  • Chitosan
  • Chicory
  • Antibacterial
  1. Raziyeva, K., Kim, Y., Zharkinbekov, Z., Kassymbek., K., Jimi, S., Saparov, A., "Immunology of acute and chronic wound healing", Biomolecules, Vol. 11, No. 5, (2021), 700. https://doi.org/10.3390/biom11050700
  2. Tottoli, E. M., Dorati, R., Genta, I., Chiesa, E., Pisani, S., Conti, B., "Skin wound healing process and new emerging technologies for skin wound care and regeneration", Pharmaceutics, Vol. 12, No. 8, (2020), 735. https://doi.org/10.3390/pharmaceutics12080735
  3. Sweeney, I. R., Miraftab, M., Collyer, G., "A critical review of modern and emerging absorbent dressings used to treat exuding wounds", International Wound Journal, Vol. 9, No. 6, (2012), 601-612. https://doi.org/10.1111/j.1742-481X.2011.00923.x
  4. Vijayakumar, V., Samal, S. K., Mohanty, S., Nayak, S. K., "Recent advancements in biopolymer and metal nanoparticle-based materials in diabetic wound healing management", International Journal of Biological Macromolecules, Vol. 122, No. 1, (2019), 137-148. https://doi.org/10.1016/j.ijbiomac.2018.10.120
  5. Lim, C. T., "Nanofiber technology: Current status and emerging developments", Progress in Polymer Science, Vol. 70, (2017), 1-17. https://doi.org/10.1016/j.progpolymsci.2017.03.002
  6. Liu, X., Xu, H., Zhang, M., Yu, D. G., "Electrospun medicated nanofibers for wound healing", Membranes, Vol. 11, No. 10, (2021), 770. https://doi.org/10.3390/membranes11100770
  7. Nersisyan, H. H., Lee, J. H., Ding, J. R., Kim, K. S., Manukyan, K. V., Mukasyan, A. S., "Combustion synthesis of zero-, one-, two-and three-dimensional nanostructures: current trends and future perspectives", Progress in Energy and Combustion Science, Vol. 63, (2017), 79-118. https://doi.org/10.1016/j.pecs.2017.07.002
  8. Rasouli, R., Barhoum, A., Bechelany, M., Dufresne, A., "Nanofibers for biomedical and healthcare applications", Macromolecular Bioscience, Vol. 19, No. 2, (2019), 1800256. https://doi.org/10.1002/mabi.201800256
  9. Kim, S., "Competitive biological activities of chitosan and its derivatives: Antimicrobial, antioxidant, anticancer, and anti-inflammatory activities", International Journal of Polymer Science, Vol. 2018, (2018), 1708172. https://doi.org/10.1155/2018/1708172
  10. Matica, M. A., Aachmann, F. L., Tøndervik, A., Sletta, H., Ostafe, V., "Chitosan as a wound dressing starting material: Antimicrobial properties and mode of action", International Journal of Molecular Sciences, Vol. 20, No. 23, (2019), 5889. https://doi.org/10.3390/ijms20235889
  11. Ardila, N., Daigle, F., Heuzey, M. C., Ajji, A., "Antibacterial activity of neat chitosan powder and flakes", Molecules, Vol. 22, No. 1, (2017), 100. https://doi.org/10.3390/molecules22010100
  12. Cui, C., Sun, S., Wu, S., Chen, S., Ma, J., Zhou, F., "Electrospun chitosan nanofibers for wound healing application", Engineered Regeneration, Vol. 2, (2021), 82-90. https://doi.org/10.1016/j.engreg.2021.08.001
  13. Morin-Crini, N., Lichtfouse, E., Torri, G., Crini, G., "Fundamentals and applications of chitosan", Sustainable Agriculture Reviews, Vol. 35, (2019), 49-123. https://doi.org/10.1007/978-3-030-16538-3_2
  14. Jin, E., Wu, M., Wang, S., Qiao, Z., Li, M., Linghu, W., "Preparation and application performance of graft-quaternization double modified chitosan electrospun antibacterial nanofibers", Materials Today Communications, Vol. 31, (2022), 103712. https://doi.org/10.1016/j.mtcomm.2022.103712
  15. Elsabee, M. Z., Naguib, H. F., Morsi, R. E., "Chitosan based nanofibers, review", Materials Science and Engineering, Vol. 32, No. 7, (2012), 1711-1726. https://doi.org/10.1016/j.msec.2012.05.009
  16. Tang, X., Alavi, S., "Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and their biodegradability", Carbohydrate Polymers, Vol. 85, No. 1, (2011), 7-16. https://doi.org/10.1016/j.carbpol.2011.01.030
  17. Zhang, D., Zhou, W., Wei, B., Wang, X., Tang, R., Nie, J., Wang, J., "Carboxyl-modified poly (vinyl alcohol)-crosslinked chitosan hydrogel films for potential wound dressing", Carbohydrate Polymers, Vol. 125, No. 10, (2015), 189-199. https://doi.org/10.1016/j.carbpol.2015.02.034
  18. Jia, Y. T., Gong, J., Gu, X. H., Kim, H. Y., Dong, J., Shen, X. Y., "Fabrication and characterization of poly (vinyl alcohol)/chitosan blend nanofibers produced by electrospinning method", Carbohydrate Polymers, Vol. 67, No. 3, (2007), 403-409. https://doi.org/10.1016/j.carbpol.2006.06.010
  19. Rafique, A., Zia, K. M., Zuber, M., Tabasum, Sh., Rehman, S., "Chitosan functionalized poly (vinyl alcohol) for prospects biomedical and industrial applications: A review", International Journal of Biological Macromolecules, Vol. 87, (2016), 141-154. https://doi.org/10.1016/j.ijbiomac.2016.02.035
  20. Kaur, R., Kanotra, M., Sood, A., Abdellatif, A. A. H., Bhatia, S., Al-Harrasi, A., Aleya, L., Vargas-De-La-Cruz, C., Behl, T., "Emergence of nutriments as a nascent complementary therapy against antimicrobial resistance", Environmental Science and Pollution Research, Vol. 29, No. 33, (2022), 49568-49582. https://doi.org/10.1007/s11356-022-20775-0
  21. Ahmed, W., Azmant, R., Chendouh-Brahmi, N., Ahmed, R., Naz, S., Qayyum, A., Askary, A. E., Gharib., A. F., Alrehaili, A. A., Ali, N., "Natural and commercial antibiotic comparison with drugs modeling cell integrity cell stability of bio-kinetics changes under morphological topographies", Saudi Journal of Biological Sciences, Vol. 29, No. 8, (2022), 103351. https://doi.org/10.1016/j.sjbs.2022.103351
  22. Mohamed, A. E., Shetta, A., Kegere, J., Mamdouh, W., "Antibacterial and antioxidant properties of Cichorium intybus extract embedded in chitosan nanocomposite nanofibers", International Journal of Biological Macromolecules, Vol. 215, (2022), 387-397. https://doi.org/10.1016/j.ijbiomac.2022.06.088
  23. Gharari, Z., Hanachi, P., Sadeghinia, H., Walker, T. R., "Cichorium intybus bio-callus synthesized silver nanoparticles: A promising antioxidant, antibacterial and anticancer compound", International Journal of Pharmaceutics, Vol. 625, (2022), 122062. https://doi.org/10.1016/j.ijpharm.2022.122062
  24. Wang, Q., Cui, J., "Perspectives and utilization technologies of chicory (Cichorium intybus L.): A review" African Journal of Biotechnology, Vol. 10, No. 11, (2011), 1966-1977. https://doi.org/10.5897/AJB10.587
  25. Perovića, J., Šaponjaca, V. T., Kojićb, J., Kruljb, J., Morenoc, D. A., Viguerac, C. G., Solarovb, M. B., Ilićb, N., "Chicory (Cichorium intybus L.) as a food ingredient–nutritional composition, bioactivity, safety, and health claims: A review", Food Chemistry, Vol. 336, (2021), 127676. https://doi.org/10.1016/j.foodchem.2020.127676
  26. Häkkinen, S. T., Soković, M., Nohynek, L., Ćirić, A., Ivanov, M., Stojković, D., Tsitko, I., Matos, M., Baixinho, J. P., Ivasiv, V., Fernández, N.,Santos, C. N. D., Caldentey, K. M. O., "Chicory extracts and sesquiterpene lactones show potent activity against bacterial and fungal pathogens", Pharmaceuticals, Vol. 14, No. 9, (2021), 941. https://doi.org/10.3390/ph14090941
  27. Khalaf, H. A., El-Saadani, R. M., El-Desouky, A. I., Abdeldaiem, M. H., Elmehy, M. E., "Antioxidant and antimicrobial activity of gamma-irradiated chicory (Cichorium intybus L.) leaves and roots", Food Measurement and Characterization, Vol. 12, (2018), 1843-1851. https://doi.org/10.1007/s11694-018-9798-0
  28. Abdullah, B. H., Al-Saedi, F., Salman, A. E., "Effects of Cichorium intybus methanolicextracts on some clinical bacterial isolates", Indian Journal of Public Health Research & Development, Vol. 10, No. 2, (2019), 829-833. https://doi.org/10.5958/0976-5506.2019.00398.X
  29. Bezerra, M. S., Zeferino, K. S., Menezes, L. D., Bezerra, A. S., Lopes, L. Q. S., Marquezan, F. K., Marquezan, P. K., "Antimicrobial and antibiofilm activities of Cichorium intybus: A review", Research, Society and Development, 11, No. 2, (2022), e10911225384. http://dx.doi.org/10.33448/rsd-v11i2.25384
  30. Jamnongkan, T., Wattanakornsiri, A., Pansila, P. P., Migliaresi, C., Kaewpirom, S., "Effect of poly (vinyl alcohol)/chitosan ratio on electrospun-nanofiber morphologies", Advanced Materials Research, Vol. 463, (2012), 734-738. https://doi.org/10.4028/www.scientific.net/AMR.463-464.734
  31. Bahrami, S. H., Nouri, M., "Chitosan-poly (vinyl alcohol) blend nanofibers: Morphology, biologicaland antimicrobial properties", e-Polymers, Vol. 9, No. 1, (2009), 133. https://doi.org/10.1515/epoly.2009.9.1.1580
  32. Mohamed, A. E., Shetta, A., Kegere, J., Mamdouh, W., "Antibacterial and antioxidant properties of Cichorium intybus extract embedded in chitosan nanocomposite nanofibers",International Journal of Biological Macromolecules, 215, (2022), 387-397. https://doi.org/10.1016/j.ijbiomac.2022.06.088
  33. Neo, Y. P., Ray, S., Easteal, A. J., Nikolaidis, M. G., Quek, S. Y., "Influence of solution and processing parameters towards the fabrication of electrospun zein fibers with sub-micron diameter", Journal of Food Engineering, Vol. 109, No. 4, (2012), 645-651. https://doi.org/10.1016/j.jfoodeng.2011.11.032
  34. Haq, A. U., Abrar, M., Iqbal, T., Khan, M. N., Shafique, M., "Qualitative and quantitative discrimination of major elements in chitosan (natural polymer) using laser induced breakdown spectroscopy", Optics & Laser Technology, Vol. 154, (2022), 108222. https://doi.org/10.1016/j.optlastec.2022.108222
  35. Zarroug, Y., Abdelkarim, A., Dorra, S. T., Hamdaoui, G., Felah, M. E. L., Hassouna, M., "Biochemical characterization of tunisian Cichorium intybus L. roots and optimization of ultrasonic inulin extraction", Mediterranean Journal of Chemistry, Vol. 6, No. 1, (2016), 674-685. http://dx.doi.org/10.13171/mjc61/01611042220-zarroug
  36. El-Kholy, W. M., Aamer, R. A., Ali, A. N. A., "Utilization of inulin extracted from chicory (Cichorium intybus L.) roots to improve the properties of low-fat synbiotic yoghurt", Annals of Agricultural Sciences, Vol. 65, No. 1, (2020), 59-67. https://doi.org/10.1016/j.aoas.2020.02.002
  37. Meng, X., Lv, H., Ding, X., Jian, T., Feng, X., Ren, B., Chen, J., "Sesquiterpene lactones with anti-inflammatory and cytotoxic activities from the roots of Cichorium intybus", Phytochemistry, Vol. 203, (2022), 113377. https://doi.org/10.1016/j.phytochem.2022.113377
  38. Wu, J. Y., Ooi, C. W., Song, C. P., Wang, C. Y., Liu, B. L., Lin, G. Y., Chiu, C. Y., Chang, Y. K., "Antibacterial efficacy of quaternized chitosan/poly (vinyl alcohol) nanofiber membrane crosslinked with blocked diisocyanate", Carbohydrate Polymers, Vol. 262, (2021), 117910. https://doi.org/10.1016/j.carbpol.2021.117910
  39. Wu, J. Y., Wang, C. Y., Chen, K. H., Lai, Y. R., Chiu, C. Y., Lee, H. C., Chang, Y. K., "Electrospinning of quaternized chitosan-poly (vinyl alcohol) composite nanofiber membrane: processing optimization and antibacterial efficacy", Membranes, Vol. 12, No. 3, (2022), 332. https://doi.org/10.3390/membranes12030332