نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 کارشناسی ارشد، دانشکده مهندسی مواد و متالورژی، دانشگاه علم و صنعت ایران، تهران، تهران، ایران

2 دانشیار، دانشکده مهندسی مواد و متالورژی، دانشگاه علم و صنعت ایران، تهران، تهران، ایران

3 استاد، دانشکده مهندسی مواد و متالورژی، دانشگاه علم و صنعت ایران، تهران، تهران، ایران

10.30501/jamt.2022.297161.1186

چکیده

در این پژوهش، نانوذرات LiFePO4 که به‌عنوان ماده کاتدی مورد استفاده در باتری‌های لیتیم ـ یون شناخته می‌شود، با استفاده از روش سنتز احتراق محلولی تهیه شدند. واکنش احتراق محلولی توسط مخلوط سوخت‌هایی مانند ترکیب ستیل تری‌متیل آمونیوم برمید (CTAB) و گلایسین (CG)، CTAB و سیتریک اسید (CCA)، CTAB و اوره (CU) و در نسبت سوخت به اکسنده برابر 5 انجام شد. به‌دلیل نرخ واکنش احتراق آهسته، فاز LiFePO4 پس از احتراق تشکیل شد، اما با ناخالصی‌هایی همراه بود. ارزیابی فازی پودر توسط پراش پرتو ایکس (XRD) نشان داد پس از تکلیس در دمای 700 درجه سلسیوس به‌مدت 3 ساعت در اتمسفر (95 % Ar + 5 % H2)، پودر LiFePO4 تک‌فاز به‌دست می‌آید. آزمون FTIR نیز، به‌منظور شناسایی گروه‌های عاملی، برای پودر LiFePO4 انجام شد. همچنین، تصاویر میکروسکوپ الکترونی روبشی (SEM) نمایانگر ریزدانه‌هایی با ریخت‌شناسی کروی‌مانند بودند. با بررسی خواص الکتروشیمیایی، بیشترین ظرفیت دشارژ به مخلوط سوخت CTAB و سیتریک اسید (در نرخ C2/0، mAh g-1 127) تعلق داشت که به‌دلیل بلورینگی بالا و اندازه ذرات کم آن بود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Electrochemical Performance of LiFePO4/C Powders Synthesized by Solution Combustion Method as the Lithium-Ion Batteries Cathode Material

نویسندگان [English]

  • Maedeh Karami 1
  • Seyed Morteza Masoudpanah 2
  • Hamid Reza Rezaei 3

1 M. Sc., Faculty of Materials Engineering and Metallurgy, Iran University of Science and Technology, Tehran, Tehran, Iran

2 Associate Professor, Faculty of Materials and Metallurgy Engineering, Iran University of Science and Technology, Tehran, Tehran, Iran

3 Professor, Faculty of Materials and Metallurgy Engineering, Iran University of Science and Technology, Tehran, Tehran, Iran

چکیده [English]

The current research aims to synthesize LiFePO4 nanoparticles as common cathodic materials used for lithium-ion batteries through the solution combustion synthesis method using a mixture of different types of organic fuels such as CetylTrimethylAmmonium Bromide (CTAB)-Glycine (CG), CTAB-Citric Acid (CCA), and CTAB-Urea (CU), considering the effects of fuel contents with the oxidant ratio of 5. The low rate of combustion reaction led to direct formation of LiFePO4 phase which was accompanied by some impurity phases. According to the results from the X-ray powder diffraction, single-phase LiFePO4 powders can be obtained followed by calcination at 700 °C for three h under the 95 % Ar + 5 % H2 atmosphere. The functional groups of the LiFePO4 powders were characterized based on Fourier Transform Infrared (FTIR) spectroscopy. In addition, small particles (~ 100-400 nm) with spherical morphologies as a function of fuel type were detected in Scanning Electron Microscopy (SEM) images. The electrochemical properties confirmed that the highest discharge capacity could be obtained using a mixture of CTAB and citric acid fuels (at the rate of 0.2 C, 127 mAh g-1) characterized by high crystallinity and small particle size.

کلیدواژه‌ها [English]

  • Lithium Ion Battery
  • Cathode Material
  • LiFePO4
  • Solution Combustion Synthesis
  1. Myung, S. T., Amine, K., Sun, Y. K., "Nanostructured cathode materials for rechargeable lithium batteries", Journal of Power Sources, Vol. 283, (2015), 219-236. https://doi.org/10.1016/j.jpowsour.2015.02.119
  2. Satyavani, T., Kumar, A. S., Rao, P. S., "Methods of synthesis and performance improvement of lithium iron phosphate for high rate Li-ion batteries: A review", Engineering Science and Technology, an International Journal, Vol. 19, No. 1, (2016), 178-188. https://doi.org/10.1016/j.jestch.2015.06.002
  3. Pistoia, G., Lithium-Ion Batteries, Elsevier, Amsterdam, Netherlands, (2013). https://doi.org/10.1016/C2011-0-09658-8
  4. Linden, D., Handbook of Batteries, in Fuel and energy abstracts, (1995).
  5. Wakihara, M., "Recent developments in lithium ion batteries", Materials Science and Engineering, Vol. 33, No. 4, (2001), 109-134. https://doi.org/10.1016/S0927-796X(01)00030-4
  6. Gao, C., Zhou, J., Liu, G., Wang, L., "Microwave-assisted synthesis and surface decoration of LiFePO4 hexagonal nanoplates for lithium-ion batteries with excellent electrochemical performance", Journal of Materials Science, Vol. 52, No. 3, (2017), 1590-1602. https://link.springer.com/article/10.1007%2Fs10853-016-0453-z
  7. Fathi, H., Masoudpanah, S. M., Alamolhoda, S., Parnianfar, H., "Effect of fuel type on the microstructure and magnetic properties of solution combusted Fe3O4 powders", Ceramics International, Vol. 43, No. 10, (2017), 7448-7453. https://doi.org/10.1016/j.ceramint.2017.03.017
  8. Li, X., Shao, Z., Liu, K., Zhao, Q., Liu, G., Xu, B., "Influence of synthesis method on the performance of the LiFePO4/C cathode material", Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 529, (2017), 850-855. https://doi.org/10.1016/j.colsurfa.2017.06.080
  9. Li, Q., Zheng, F., Huang, Y., Zhang, X., Wu, Q., Fu, D., Zhang, J., Yin, J., Wang, H., "Surfactants assisted synthesis of nano-LiFePO4/C composite as cathode materials for lithium-ion batteries", Journal of Materials Chemistry A, Vol. 3, No. 5, (2015). 2025-2035. https://doi.org/10.1039/C4TA03293D
  10. Ozawa, K., Lithium Ion Rechargeable Batteries, Materials, Technology, and New Applications, John Wiley & Sons, (2012). http://dx.doi.org/10.1002/9783527629022
  11. Varma, A., Mukasyan, A. S., Rogachev, A. S., Manukyan, K. V., "Solution combustion synthesis of nanoscale materials", Chemical Reviews, Vol. 116, No. 23, (2016), 14493-14586. https://doi.org/10.1021/acs.chemrev.6b00279
  12. Whittingham, M. S., "Lithium batteries and cathode materials", Chemical Reviews, Vol. 104, No. 10, (2004), 4271-4302. https://doi.org/10.1021/cr020731c
  13. Hu, M., Pang, X., Zhou, Z., "Recent progress in high-voltage lithium ion batteries", Journal of Power Sources, Vol. 237, (2013), 229-242. https://doi.org/10.1016/j.jpowsour.2013.03.024
  14. Pourgolmohammad, B., Masoudpanah, S. M., Aboutalebi, M. R., "Effect of starting solution acidity on the characteristics of CoFe2O4 powders prepared by solution combustion synthesis", Journal of Magnetism and Magnetic Materials, Vol. 424, (2017), 352-358. https://doi.org/10.1016/j.jmmm.2016.10.073
  15. Karami, M., Masoudpanah, S. M., Rezaie, H., "Solution combustion synthesis of hierarchical porous LiFePO4 powders as cathode materials for lithium-ion batteries", Advanced Powder Technology, Vol. 32, No. 6, (2021), 1935-1942. https://doi.org/10.1016/j.apt.2021.04.007
  16. Jain, S., Adiga, K., Verneker, V. P., "A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures", Combustion and Flame, Vol. 40, (1981), 71-79. https://doi.org/10.1016/0010-2180(81)90111-5
  17. Vasei, H. V., Masoudpanah, S. M., Adeli, M., Aboutalebi, M. R., "Solution combustion synthesis of ZnO powders using CTAB as fuel", Ceramics International, Vol. 44, No. 7, (2018), 7741-7745. https://doi.org/10.1016/j.ceramint.2018.01.202
  18. Hadadian, S., Masoudpanah, S. M., Alamolhoda, S., "Solution combustion synthesis of Fe3O4 powders using mixture of CTAB and citric acid fuels", Journal of Superconductivity and Novel Magnetism, Vol. 32, No. 2, (2019), 353-360. https://link.springer.com/article/10.1007/s10948-018-4685-9
  19. Hamedani, S. F. N., Masoudpanah, S. M., Bafghi, M. S., Baloochi, N. A., "Solution combustion synthesis of CoFe2O4 powders using mixture of CTAB and glycine fuels", Journal of Sol-Gel Science and Technology, Vol. 86, No. 3, (2018), 743-750. https://link.springer.com/article/10.1007/s10971-018-4671-5
  20. Yin,, Wang, W., Zhou, L., Sun, S., Zhang, L., "CTAB-assisted synthesis of monoclinic BiVO4 photocatalyst and its highly efficient degradation of organic dye under visible-light irradiation", Journal of Hazardous Materials, Vol. 173, No. 1-3, (2010), 194-199. https://doi.org/10.1016/j.jhazmat.2009.08.068
  21. Haghi, Z., Masoudpanah, S. M., "CTAB-assisted solution combustion synthesis of LiFePO4 powders", Journal of Sol-Gel Science and Technology, 91, No. 2, (2019), 335-341. https://link.springer.com/article/10.1007/s10971-019-05002-6
  22. Julien, C., Mauger, A., Vijh, A., Zaghib, K., Lithium Batteries, Science and Technology, Springer, Switzerland, (2016), 29-68. https://doi.org/10.1007/978-3-319-19108-9
  23. Rajoba, S. J., Jadhav, L. D., Kalubarme, R. S., Yadav, S. N., "Influence of synthesis parameters on the physicochemical and electrochemical properties of LiFePO4 for Li-ion battery", Journal of Alloys and Compounds, Vol. 774, (2019), 841-847. https://doi.org/10.1016/j.jallcom.2018.09.325
  24. Salah, A. A., Jozwiak, P., Zaghib, K., Garbarczyk, J., Gendron, F., Mauger, A., Julien, C. M., "FTIR features of lithium-iron phosphates as electrode materials for rechargeable lithium batteries", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 65, No. 5, (2006), 1007-1013. https://doi.org/10.1016/j.saa.2006.01.019
  25. Vedala, S., Sushama, M., "Urea assisted combustion synthesis of LiFePO4/C nano composite cathode material for lithium ion battery storage system", Materials Today: Proceedings, Vol. 5, No. 1, (2018), 1649-1656. https://doi.org/10.1016/j.matpr.2017.11.259
  26. Yamada, A., Koizumi, H., Nishimura, S. I., Sonoyama, N., Kanno, R., Yonemura, M., Nakamura, T., Kobayashi, Y., "Room-temperature miscibility gap in LixFePO4", Nature Materials, Vol. 5, No. 5, (2006), 357-360. http://dx.doi.org/10.1038/nmat1634
  27. Tang, K., Yu, X., Sun, J., Li, H., Huang, X., "Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS", Electrochimica Acta, Vol. 56, No. 13, (2011), 4869-4875. https://doi.org/10.1016/j.electacta.2011.02.119