نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی مکانیک، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، تهران، ایران

2 دانشیار، گروه مهندسی مکانیک، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، تهران، ایران

3 استاد، دانشکده مهندسی و علم مواد، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، تهران، ایران

4 استادیار، گروه مهندسی مکانیک، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، تهران، ایران

چکیده

در این پژوهش، تأثیر اعمال سیکلهای حرارتی بر رفتار ضربه چندلایه الیاف - فلز ساخته‌شده از آلومینیم و کامپوزیت اپوکسی - الیاف کربن بررسی شد. بدین‌منظور، در ابتدا چندلایههای الیاف فلز با چیدمانهای متفاوت الیاف کربن (˚0/˚0/˚0/˚0، ˚90/˚90/˚90/˚90، ˚30+/˚30-/˚30-/˚30+ و ˚0/˚90/˚90/˚0) ساخته شدند و تحت سیکلهای حرارتی، 0، 1، 10، 30، 50، 70 و 90 قرار گرفتند. برای انجام هر سیکل حرارتی، نمونهها ابتدا داخل آون به‌مدت 15 دقیقه قرار داده شدند تا دمای آنها از دمای محیط به دمای 100 درجه سلسیوس برسد. سپس، نمونهها به‌مدت 5 دقیقه در این دما نگهداری شدند و پس از آن از آون خارج و در دمای محیط به‌مدت 15 دقیقه رها شدند تا دمای آنها به دمای محیط برسد. سپس، رفتار ضربه این نمونهها به‌کمک آزمون ضربه چارپی بررسی شد و سازوکارهای مرتبط توسط روشهای ماکروساختاری و میکروساختاری  شناسایی شدند. نتایج بهدست‌آمده نشان داد که اعمال سیکلهای حرارتی بر چیدمانهای تکجهته (˚0/˚0/˚0/˚0 و ˚90/˚90/˚90/˚90) در ابتدا باعث بهبود قابلیت جذب انرژی در این سازهها می‌شود که به‌ترتیب بیشترین بهبود در این چیدمانها 4/21 و 4/19 درصد هستند. همچنین، نتایج نشان داد که سازوکارهای بهبود و کاهش قابلیت جذب انرژی، با تغییر چیدمانها، به سیکلهای حرارتی بالاتر منتقل شدند. بررسی میکروساختاری نشان داد که رفتار شکست با اعمال سیکل حرارتی تغییر کرده و چسبندگی بین الیاف کربن و زمینه اپوکسی از بین رفته است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The Effect of Thermal Cycles on the Impact Performance of Carbon Fibers-Epoxy/Aluminum Fibers Metal Laminates

نویسندگان [English]

  • Mohammad Askari 1
  • Mehrdad Javadi 2
  • Reza Eslami Farsani 3
  • Abdolreza Geranmayeh 4

1 Ph. D. Student, Department of Mechanical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Tehran, Iran

2 Associate Professor, Department of Mechanical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Tehran, Iran

3 Professor, Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Tehran, Iran

4 Assistant Professor, Department of Mechanical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Tehran, Iran

چکیده [English]

 In the current study, the effect of performing the thermal cycling on the impact behavior of Fiber Metal Laminates (FMLs) fabricated by aluminum and carbon fibers/epoxy composites was investigated. To this end, first, the FMLs with various configurations of carbon fibers (0˚/0˚/0˚/0˚, 90˚/90˚/90˚/90˚, +30˚/-30˚/-30˚/+30˚, and 0˚/90˚/90˚/0˚) were fabricated and put into oven under the thermal cycling conditions with 0, 1, 10, 30, 50, 70, and 90 cycles. For each thermal cycle, the samples were put into the oven for 15 min to increase their temperature from the ambient temperature to 100 °C. Then, the temperature was kept constant for five minutes. Next, FMLs were extracted from the oven to reduce their temprature by the ambient temperature for 15 min. Then, the impact behavior of these samples was investigated based on Charpy impact test, and the related mechanisms were characterized by macrostructural and microstructural methods. The obtained results confirmed that followed by the thermal cycling on the unidirectional samples (0˚/0˚/0˚/0˚ and 90˚/90˚/90˚/90˚), the absorbed energy capability was considerably improved. To be specific, the maximum improvement values in these configurations were obtained as 21.4 and 19.4 %, respectively. It was also found that by changing the configurations, the enhancement and reduction of the absorbed energy capability were transferred in the higher thermal cycles. The microstructural investigations revealed that after thermal cycles, the fracture behavior was altered, and the adhesion between carbon fibers and epoxy matrix was deteriorated.
 

کلیدواژه‌ها [English]

  • Fiber Metal Laminates
  • Impact Behavior
  • Thermal Cycle
  • Carbon Fibers
  1. Ebrahimnezhad Khaljiri, H., Eslami Farsani, R., Khorsand, H., Abbas Banaie, K., "Hybridization effect of fibers reinforcement on tensile properties of epoxy composites", Journal of Science and Technology of Composite, Vol. 1, No. 2, (2015), 21-28. http://jstc.iust.ac.ir/?_action=articleInfo&article=11787&lang=en
  2. Bahari-Sambran, F., Eslami-Farsani, R., Ebrahimnezhad-Khaljiri, H., "Experimental investigation of flexural behavior of basalt fibers/epoxy-aluminum laminate composites containing nanoclay particles", Iranian Journal of Manufacturing Engineering, Vol. 5, No. 1, (2018), 45-54. http://www.iranjme.ir/article_65946_en.html
  3. EL-Wazery, M. S., "Mode-I Fracture Toughness investigation on carbon/glass hybrid composites", International Journal of Engineering, Transactions B: Applications, Vol. 34, No. 11, (2021), 2418-2423. https://www.ije.ir/article_137172.html
  4. Nemati, N., Sadrnezhad, S. K., Riazati, Sh., "Effect of constrained ageing on orthodontic wires for changing their control to reinforcements in smart metal/polymer composite", Journal of Advanced Materials and Technologies (JAMT), Vol. 2, No. 1, (2010), 28-39. https://www.jamt.ir/article_70174.html?lang=fa
  5. Hosseini-Toudeshky, H., Sadighi, M., Vojdani, A., "Effects of curing thermal residual stresses on fatigue crack propagation of aluminum plates repaired by fml patches", Composite Structures, Vol. 100, (2013), 154-162. https://doi.org/10.1016/j.compstruct.2012.12.052
  6. Ebrahimnezhad-Khaljiri, H., Eslami-Farsani, R., "Thermal and mechanical properties of hybrid carbon/oxidized polyacrylonitrile fibers-epoxy composites", Polymer Composites, Vol. 38, No. 7, (2017), 1412-1417. https://doi.org/10.1002/pc.23708
  7. Hu, Y., Liu, C., Wang, C., Fu, X., Zhang, Y., "Study on the hygrothermal aging behavior and diffusion mechanism of ti/cf/pmr polyimide composite laminates", Materials Research Express, Vol. 7, (2020), 076508. https://doi.org/10.1088/2053-1591/aba30c
  8. Eslami-Farsani, R., Aghamohammadi, H., Khalili, S. M. R., Ebrahimnezhad-Khaljiri, H., Jalali, H., "Recent trend in developing advanced fiber metal laminates reinforced with nanoparticles: A review study", Journal of Industrial Textiles, Vol. 51, No. 5_suppl., (2022), 7374S-7408S. https://doi.org/10.1177/1528083720947106
  9. Reyes, V. G., Cantwell, W. J., "The mechanical properties of fibre-metal laminates based on glass fibre reinforced polypropylene", Composites Science and Technology, Vol. 60, No. 7, (2000), 1085-1094. https://doi.org/10.1016/S0266-3538(00)00002-6
  10. Zhou, J., Guan, Z. W., Cantwell, W. J., "The influence of strain-rate on the perforation resistance of fiber metal laminates", Composite Structures, Vol. 125, (2015), 247-255. http://dx.doi.org/10.1016/j.compstruct.2015.02.034
  11. Lawcock, G., Ye, L., Mai, Y. W., Sun, C. T., "The effect of adhesive bonding between aluminum and composite prepreg on the mechanical properties of carbon-fiber-reinforced metal laminates", Composites Science and Technology, Vol. 57, No. 1, (1997), 35-45. https://doi.org/10.1016/S0266-3538(96)00107-8
  12. Botelho, E. C., Silva, R. A., Pardini, L. C., Rezende, M. C., "A review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures", Materials Research, Vol. 9, No. 3, (2006), 247-256. https://doi.org/10.1590/S1516-14392006000300002
  13. Rajkumar, G. R., Krishna, M., Narasimhamurthy, H. N., Keshavamurthy, Y. C., Nataraj, J. R., "Investigation of tensile and bending behavior of aluminum based hybrid fiber metal laminates", Procedia Materials Science, Vol. 5, (2014), 60-68. https://doi.org/10.1016/j.mspro.2014.07.242
  14. Austin, T. S. P., Singh, M. M., Gregson, P. J., Powell, P. M., "Characterisation of fatigue crack growth and related damage mechanisms in frp-metal hybrid laminates", Composites Science and Technology, Vol. 68, No. 6, (2008), 1399-1412. https://doi.org/10.1016/j.compscitech.2007.11.013
  15. Nakatani, H., Kosaka, T., Osaka, K., Sawada, Y., "Damage characterization of titanium/gfrp hybrid laminates subjected to low-velocity impact", Composites Part A: Applied Science and Manufacturing, Vol. 42, No. 7, (2011), 772-781. https://doi.org/10.1016/j.compositesa.2011.03.005
  16. Fan, J., Guan, Z. W., Cantwell, W. J., "Numerical modelling of perforation failure in fibre metal laminates subjected to low velocity impact loading", Composite Structures, Vol. 93, No. 9, (2011), 2430-2436. https://doi.org/10.1016/j.compstruct.2011.04.008
  17. Asaee, Z., Shadlou, S., Taheri, F., "Low-velocity impact response of fiberglass/magnesium FMLs with a new 3d fiberglass fabric", Composite Structures, Vol. 122, (2015), 155-165. http://dx.doi.org/10.1016/j.compstruct.2014.11.038
  18. Rahmani, H., Eslami-Farsani, R., Ebrahimnezhad-Khaljiri, H., "High velocity impact response of aluminum- carbon fibers-epoxy laminated composites toughened by nano silica and zirconia", Fibers and Polymers, Vol. 21, No. 1, (2020), 170-178. https://doi.org/10.1007/s12221-020-9594-4
  19. Najafi, M., Ansari, R., Darvizeh, A., "Effect of cryogenic aging on nanophased fiber metal laminates and glass/epoxy composites", Polymer Composites, Vol. 40, No. 6, (2019), 2523-2533. https://doi.org/10.1002/pc.25134
  20. Najafi, M., Darvizeh, A., Ansari, R., "Effect of salt water conditioning on novel fiber metal laminates for marine applications", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, Vol. 233, No. 8, (2019), 1542-1554. https://doi.org/10.1177%2F1464420718767946
  21. Ebrahimnezhad-Khaljiri, H., Eslami-Farsani, R., Talebi, S., "Investigating the high velocity impact behavior of the laminated composites of aluminum / jute fibers- epoxy containing nanoclay particles", Fibers and Polymers, Vol. 21, No. 11, (2020), 2607-2613. https://doi.org/10.1007/s12221-020-1209-6
  22. Shamohammadi, M. M., Ebrahimnezhad-Khaljiri, H., Eslami-Farsani, R., "The experimental assessment of the various surface modifications on the tensile and fatigue behaviors of laminated aluminum/aramid fibers-epoxy composites", International Journal of Fatigue, Vol. 154, (2022), 106560. https://doi.org/10.1016/j.ijfatigue.2021.106560
  23. Park, S. Y., Choi, H. S., Choi, W. J., Kwon, H., "Effect of vacuum thermal cyclic exposures on unidirectional carbon fiber/epoxy composites for low earth orbit space applications", Composites Part B: Engineering, Vol. 43, No. 2, (2012), 726-738. https://doi.org/10.1016/j.compositesb.2011.03.007
  24. Lévêque, D., Schieffer, A., Mavel, A., Maire, J. F., "Analysis of how thermal aging affects the long-term mechanical behavior and strength of polymer-matrix composites", Composites Science and Technology, Vol. 65, No. 3-4, (2005), 395-401. https://doi.org/10.1016/j.compscitech.2004.09.016
  25. Odegard, G. M., Bandyopadhyay, A., "Physical aging of epoxy polymers and their composites", Journal of Polymer Science Part B: Polymer Physics, Vol. 49, No. 24, (2011), 1695-1716. https://doi.org/10.1002/polb.22384
  26. Cysne Barbosa, A. P., Fulco, A. P. P., Guerra, E. S. S., Arakaki, F. K., Tosatto, M., Costa, M. C. B., Melo, J. D. D., "Accelerated aging effects on carbon fiber/epoxy composites", Composites Part B: Engineering, Vol. 110, (2017), 298-306. http://dx.doi.org/10.1016/j.compositesb.2016.11.004
  27. Xu, L., He, Y., Jia, Y., Ma, S., Hui, L., "Effects of thermal–oxidative aging on the mechanical properties of open-hole t800 carbon fiber/high-temperature epoxy composites", High Performance Polymers, Vol. 32, No. 5, (2020), 494-505. https://doi.org/10.1177%2F0954008319883691
  28. Wang, Z., Xian, G., Zhao, X. L., "Effects of hydrothermal aging on carbon fibre/epoxy composites with different interfacial bonding strength", Construction and Building Materials, Vol. 161, (2018), 634-648. https://doi.org/10.1016/j.conbuildmat.2017.11.171
  29. Fan, W., Li, J. L., Zheng, Y. Y., Liu, T. J., Tian, X., Sun, R. J., "Influence of thermo-oxidative aging on the thermal conductivity of carbon fiber fabric reinforced epoxy composites", Polymer Degradation and Stability, Vol. 123, (2016), 162-169. https://doi.org/10.1016/j.polymdegradstab.2015.11.016
  30. Zhang, M., Sun, B., Gu, B., "Accelerated thermal ageing of epoxy resin and 3-d carbon fiber/epoxy braided composites", Composites Part A: Applied Science and Manufacturing, Vol. 85, (2016), 163-171. http://dx.doi.org/10.1016/j.compositesa.2016.03.028