نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی پزشکی، دانشکده علوم و فناوری‌های پزشکی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، تهران، ایران

2 استادیار، گروه مهندسی پزشکی، دانشکده علوم و فناوری‌های پزشکی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، تهران، ایران

3 دانشیار، گروه مهندسی بافت، دانشکده فناوری‌های نوین پزشکی، دانشگاه علوم پزشکی تهران، تهران، تهران، ایران

چکیده

در این مطالعه، داربست‌های نانوالیاف، در چند لایه، برای کاربرد مهندسی بافت لایه پوششی (اپیتلیال) قرنیه با فیبروئین/کلاژن/آلوئه‌ورا ساخته و ارزیابی شدند. داربست‌های نانوالیاف، برای مهندسی بافت لایه پوششی قرنیه، برپایه فیبروئین ابریشم و کلاژن حاوی آلوئه‌ورا و فاکتور رشد پوشش، به‌منزله عوامل تقویت‌کننده و محرک در ترمیم بهتر قرنیه، ساخته شدند. بدین‌منظور، داربست‌های سه‌لایه نانوالیافی با ترکیبی از روش‌های الکتروریسی و الکتروپاشش و با ‌مشخصه‌یابی به‌کمک میکروسکوپ الکترونی روبشی (SEM)، بررسی کاهش وزن، زاویه تماس آب و فاکتور رشد تهیه شدند. رهایش، آزادسازی و خواص مکانیکی ایستای داربست‌ها نیز بررسی شدند. ویژگی‌های زیستی مانند اتصال سلولی، زنده ‌ماندن سلول و قابلیت تمایز داربست نیز ارزیابی شدند. نتایج این مطالعه نشان داد که می‌توان، به این طریق، محصولی تهیه‌ کرد که جایگزینی مناسب با ضخامت و ساختار نانوالیافی با خواص مهندسی و زیستی برای ترمیم لایه پوششی آسیب‌دیده قرنیه باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Fabrication and Characterization of Collagen Nanofiber/Fibroin Silk Scaffolds for Corneal Tissue Engineering

نویسندگان [English]

  • Shaghayegh Zargar 1
  • Azadeh Asefnejad 2
  • Mahmoud Azami 3
  • Mehdi Farokhi 3

1 Ph. D. Student., Department of Medical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Tehran, Iran

2 Assistant Professor, Department of Medical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Tehran, Iran

3 Associate Professor, Department of Tissue Engineering, Faculty of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Tehran, Iran

چکیده [English]

Recently, corneal transplantation has been proposed as an effective treatment for irreversible corneal damage which facilitates access to healthy corneas; however, lack of allografts made the treatment subject to many limitations in medicine. In this regard, this study aimed to produce multilayer nanofiber scaffolds for corneal epithelial layer tissue engineering with scaffold compounds of fibroin silk/collage-EGF. The samples were first prepared and identified from the perspective of engineering and biology applications. The results of this study showed that an alternative tissue with a suitable thickness and structure of nanofibers with suitable engineering and biological properties was successfully prepared. In addition, a scaffold was prepared in this research for tissue engineering of the corneal epithelial layer based on silk fibroin and collagen containing aloe vera and epithelial growth factor as the contributing factors and stimuli for better corneal repair. For this purpose, nanofiber three-layer scaffolds were prepared by a combination of electrospinning and electrospray methods characterized by engineering features, such as Scanning Electron Microscope (SEM), to study the degradability for their weight loss, water contact angle, and growth factor. Release as well as static and dynamic mechanical properties were also investigated. Biological characteristics such as cell binding and scaffold differentiation potential were further explored. The results of this study showed the successful preparation of an alternative with a suitable thickness and structure of nanofibers with suitable engineering and biological properties. The obtained results confirmed the production of a proper scaffold with suitable thickness and nanofiber structure. Therefore, the prepared product could potentially be used as a suitable alternative for repairing the damaged corneal epithelial layer.

کلیدواژه‌ها [English]

  • Nanofiber Scaffold
  • Collagen/Silk Fibroin
  • Epidermal Growth Factor
  1. Ma, X. -Y., Bao, H. -J., Cui, L., Zou, J., "The graft of autologous adipose-derived stem cells in the corneal stromal after mechanic damage", PLOS ONE, Vol. 8, No. 10, (2013), e76103. https://org/10.1371/journal.pone.0076103
  2. Borene, M. L., Barocas, V. H., Hubel, A., "Mechanical and cellular changes during compaction of a collagen-sponge-based corneal stromal equivalent", Annals of Biomedical Engineering, Vol. 32, No. 2, (2004), 274-283. https://link.springer.com/article/10.1023/B:ABME.0000012747.97620.3a
  3. Lin, H., Li, W., Dong, N., Chen, W., Liu, J., Chen, L., Yuan, H., Geng, Z., Liu, Z., "Changes in corneal epithelial layer inflammatory cells in aqueous tear–deficient dry eye", Investigative Ophthalmology & Visual Science, Vol. 51, No. 1, (2010), 122-128. https://doi.org/10.1167/iovs.09-3629
  4. Holan, V., Javorkova, E., "Mesenchymal stem cells, nanofiber scaffolds and ocular surface reconstruction", Stem Cell Reviews and Reports, Vol. 9, No. 5, (2013), 609-619. https://doi.org/10.1007/s12015-013-9449-0
  5. Rodríguez-Vázquez, M., Vega-Ruiz, B., Ramos-Zúñiga, R., Saldaña-Koppel, D. A., Quiñones-Olvera, L. F., "Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine", BioMed Research International, (2015), 1-15. https://doi.org/10.1155/2015/821279
  6. Ciolino, J. B., Dohlman, C. H., "Biologic keratoprosthesis materials", International Ophthalmology Clinics, Vol. 49, No. 1, (2009), 1. https://doi.org/10.1097/IIO.0b013e3181924904
  7. Griffith, M., Harkin, D. G., "Recent advances in the design of artificial corneas", Current Opinion in Ophthalmology, Vol. 25, No. 3, (2014), 240-247. https://doi.org/10.1097/ICU.0000000000000049
  8. Altman, G. H., Diaz, F., Jakuba, C., Calabro, T., Horan, R. L., Chen, J., Lu, H., Richmond, J., Kaplan, D. L., "Silk-based biomaterials", Biomaterials, Vol. 24, No. 3, (2003), 401-416. https://doi.org/10.1016/S0142-9612(02)00353-8
  9. Hazra, S., Nandi, S., Naskar, D., Guha, R., Chowdhury, S., Pradhan, N., Kundu, S. C., Konar, A., "Non-mulberry silk fibroin biomaterial for corneal regeneration", Scientific Reports, Vol. 6, No. 1, (2016), 1-13. https://doi.org/10.1038/srep21840
  10. Surjushe, A., Vasani, R., Saple, D. G., "Aloe vera: A short review", Indian Journal of Dermatology, Vol. 53, No. 4, (2008), 163-166. https://doi.org/10.4103/0019-5154.44785
  11. Atiba, A., Wasfy, T., Abdo, W., Ghoneim, A., Kamal, T., Shukry, M., "Aloe vera gel facilitates re-epithelialization of corneal alkali burn in normal and diabetic rats", Clinical Ophthalmology, Vol. 9, (2015), 2019-2026. http://dx.doi.org/10.2147/OPTH.S90778
  12. Maurice, D. M., "The structure and transparency of the cornea", The Journal of Physiology, Vol. 136, No. 2, (1957), 263-286. https://doi.org/10.1113/jphysiol.1957.sp005758
  13. Peterson, J. L., Ceresa, B. P., "Epidermal growth factor receptor expression in the corneal epithelium", Cells, Vol. 10, No. 9, (2021), 2409. https://doi.org/10.3390/cells10092409
  14. Bayyoud, T., Thaler, S., Hofmann, J., Maurus, C., Spitzer, M. S., Bartz-Schmidt, K. U., Szurman, P., Yoeruek, E., "Decellularized bovine corneal posterior lamellae as carrier matrix for cultivated human corneal endothelial cells", Current Eye Research, Vol. 37, No. 3, (2012), 179-186. https://doi.org/10.3109/02713683.2011.644382
  15. Madden, P. W, Lai, J. N., George, K. A., Giovenco, T., Harkin, D. G., Chirila, T. V., "Human corneal endothelial cell growth on a silk fibroin membrane", Biomaterials, Vol. 32, No. 17, (2011), 4076-4084. https://doi.org/10.1016/j.biomaterials.2010.12.034
  16. Rezvani, M., Alahgholiyan, E., Roshangar, L., "Synthesis of a macroporous glass-ceramic scaffold containing fluorapatite crystalline phase for bone substitutes", Advanced Ceramics Progress, Vol. 6, No. 3, (2020), 47-54. https://doi.org/10.30501/acp.2020.113603
  17. Last, J. A., Thomasy, S. M., Croasdalec, C. R., Russell, P., Murphy, C. J., "Compliance profile of the human cornea as measured by atomic force microscopy", Micron, Vol. 43, No. 12, (2012), 1293-1298. https://doi.org/10.1016/j.micron.2012.02.014
  18. Khalid, H., Iqbal, H., Zeeshan, R., Nasir, M., Sharif, F., Akram, M., Irfan, M., Khan, F. A., Chaudhry, A. A., Khan, A. F., "Silk fibroin/collagen 3D scaffolds loaded with TiO2 nanoparticles for skin tissue regeneration", Polymer Bulletin, Vol. 78, No. 12, (2020), 7199-7218. https://doi.org/10.1007/s00289-020-03475-y
  19. Yonesi, M., Garcia-Nieto, M., Guinea, G. V., Panetsos, F., Pérez-Rigueiro, J., González-Nieto, D., "Silk fibroin: An ancient material for repairing the injured nervous system", Pharmaceutics, Vol. 13, No. 3, (2021), 429. https://doi.org/10.3390/pharmaceutics13030429
  20. Sadtler, K., Sing, A., Wolf, M. T., Wang, X., Pardoll, D. M., Elisseeff, J. H., "Design clinical translation and immunological response of biomaterials in regenerative medicine", Nature Reviews Materials, Vol. 1., No. 7, (2016), 1-17. https://doi.org/10.1038/natrevmats.2016.40
  21. Michelacci, Y. M., "Collagens and proteoglycans of the corneal extracellular matrix", Brazilian Journal of Medical and Biological Research, Vol. 36, No. 8, (2003), 1037-1046. https://doi.org/10.1590/S0100-879X2003000800009
  22. Huo, Y., Jiang, B., Zheng, X., Chen, W., Xie, X., "Epidermal growth factor protects against ultraviolet damage in human corneal epithelial cells through inhibiting autophagy", International Journal of Clinical Experimental Pathology, Vol. 9, No. 9, (2016), 9008-9017. https://e-century.us/files/ijcep/9/9/ijcep0022386.pdf
  23. Shoulders, M. D., Raines, R. T., "Collagen structure and stability", The Annual Review of Biochemistry, Vol. 78, (2009), 929-958. https://doi.org/10.1146/annurev.biochem.77.032207.120833
  24. Higa, K., Takeshima, N., Moro, F., Kawakita, T., Kawashima, M., Demura, M., Shimazaki , J., Asakura, T., Tsubota, K., Shimmura, S., "Porous silk fibroin film as a transparent carrier for cultivated corneal epithelial sheets", Journal of Biomaterials Science, Polymer Edition, Vol. 22, No. 17, (2012), 2261-2276. https://doi.org/10.1163/092050610X538218
  25. Teichmann, J., Valtink, M., Nitschke, M., Gramm, S., Funk, R. H., Engelmann, K., Werner, C., "Tissue engineering of the corneal endothelium: A review of carrier materials", Journal of Functional Biomaterials, Vol. 4, No. 4, (2013), 178-208. https://doi.org/10.3390/jfb4040178
  26. Kong, B., Mi. S., "Electrospun scaffolds for corneal tissue engineering: A Review", Materials, Vol. 9, No. 8, (2016), 614. https://doi.org/10.3390/ma9080614
  27. Merrett, K., Fagerholm, P., McLaughlin, C. R., Dravida, S., Lagali, N., Shinozaki, N., Watsky, M. A., Munger, R., Kato, Y., Li, F., Marmo, C. J., Griffith, M., "Tissue-engineered recombinant human collagen-based corneal substitutes for implantation: performance of type I versus type III collagen", Investigative Ophthalmology & Visual Science, Vol. 49, No. 9, (2008), 3887-3894. https://doi.org/10.1167/iovs.07-1348
  28. Curto, E. M., Labelle, A., Chandler, H. L., "Aloe vera: An in vitro study of effects on corneal wound closure and collagenase activity", Veterinary Ophthalmology, Vol. 17, No. 6, (2014), 403-410. https://doi.org/10.1111/vop.12163
  29. Bardag-Gorce, F., Oliva, J., Wood, A., Niihara, H., Makalinao, A., Sabino, S., Pan, D., Thropay, J., Sota, H., Niihara, Y., "Microarray analysis of oral mucosal epithelial cell sheet", Tissue Engineering and Regenerative Medicine, Vol. 10, No. 6, (2013), 362-370. https://www.sciencedirect.com/science/article/abs/pii/S0002939405009104
  30. Connon, C. J., Nakamura, T., Quantock, A. J., Kinoshita, S., "The persistence of transplanted amniotic membrane in corneal stroma", American Journal of Ophthalmology, Vol. 141, No. 1, (2006), 190-192. https://doi.org/10.1016/j.ajo.2005.08.027
  31. Koizumi, N., Fullwood, N. J., Bairaktaris, G., Inatomi, T., Kinoshita, S., Quantock, A. J., "Cultivation of corneal epithelial cells on intact and denuded human amniotic membrane", Investigative Ophthalmology & Visual Science, Vol. 41, No. 9, (2000), 2506-2513. https://iovs.arvojournals.org/article.aspx?articleid=2162181
  32. Akter, F., "Principles of tissue engineering" Tissue engineering made easy, Academic Press, (2016), 3-16. https://doi.org/10.1016/B978-0-12-805361-4.00002-3
  33. Esmaeilzadeh, J., Hesaraki, S., Borhan, S., "In vivo assessments of the poly (d/l) lactide/polycaprolactone/bioactive glass nanocomposites for bioscrews application", Advanced Ceramics Progress, Vol. 7, 3, (2021), 17-22. https://doi.org/10.30501/ACP.2021.286695.1061
  34. Khalili, A., Naeimi, F., Fakhrizadeh, A. A., "Electrodeposited hydroxyapatite/graphene oxide/zirconia oxide composite coatings: Characterization and antibacterial ctivity", Advanced Ceramics Progress, Vol. 6, No. 4, (2020), 8-14. https://doi.org/10.30501/acp.2020.233349.1037
  35. Holan, V., Javorkova, E., Trosan, P., "The growth and delivery of mesenchymal and limbal stem cells using copolymer polyamide 6/12 nanofiber scaffolds", Corneal Regenerative Medicine, Springer, (2013), 187-199. https://doi.org/10.1007/978-1-62703-432-6_13
  36. Oyegoke, T., Obadiah, E., Adah, F., Oguche, J. E., Timothy, G. T., Mantu, I. A., Ado, A. D., "Trends of progress in setting up biorefineries in developing countries: A review of bioethanol exploration in Nigeria", Journal of Renewable Energy and Environment (JREE), Vol. 9, No. 1, (2021), 35-50. https://doi.org/10.30501/jree.2021.278037.1197
  37. Aydram, R., Haji Agha Alizade, H., Rasouli, M., Shadidi, B., "Simplex centroid mixture design for optimizing and promoting the anaerobic co-digestion performance of sheep blood and cheese whey", Journal of Renewable Energy and Environment (JREE), Vol. 8, No. 3, (2021), 8-15. https://doi.org/10.30501/jree.2021.251583.1151
  38. Derakhshani, A., Hesaraki, S., Nezafati, N., Azami, M., “Fabrication and evaluation of physical and biological properties of hydroxyethyl cellulose/hyaluronic acid-based scaffolds used for second-degree (partial-thickness) burns wounds healing", Journal of Advanced Materials and Technologies (JAMT), Vol. 9, No. 4, (2021), 35-46. https://doi.org/10.30501/jamt.2021.226575.1086