نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دکتری، دانشکده مهندسی مواد و متالورژی، دانشگاه صنعتی امیرکبیر (پلی‌تکنیک تهران)، تهران، تهران، ایران

2 دانشیار، دانشکده مهندسی مواد و متالورژی، دانشگاه صنعتی امیرکبیر (پلی‌تکنیک تهران)، تهران، تهران، ایران

3 مرکز مطالعات و همکاری‌های علمی بین‌المللی، وزارت علوم، تحقیقات و فناوری، تهران، تهران، ایران

4 استاد، دانشکده مهندسی متالورژی و مواد، دانشگاه فنی استانبول، استانبول، استانبول، ترکیه

چکیده

لایه‌های سرامیکی متخلخل حاوی TiO2 به روش اکسایش الکترولیتی پلاسمایی (PEO) با استفاده از محلول‌های پایه هیدروکسید، استات و فسفات، روی تیتانیم سنتز شدند. تأثیر الکترولیت‌های مختلف بر آرایش فازها و ویژگی‌های ریزساختاری پوشش‌های سرامیکی به­وسیله پراش پرتو ایکس، میکروسکوپ الکترونی روبشی نشر میدانی و طیف‌سنجی پراش انرژی پرتو ایکس مورد بررسی قرار گرفت. نتایج نشان داد که استفاده از الکترولیت پایه هیدروکسید پتاسیم می‌تواند به یک ساختار ناهمگن منجر شود؛ در­حالی‌که لایه ایجادشده با استفاده از محلول پایه استاتی، دارای حفره‌های بزرگ یکنواخت در زمینه‌ای آمیخته از فازهای روتایل و تیتانات کلسیم است. استفاده از محلول پایه فسفاتی می‌توانست به تشکیل لایه متخلخل بهینه‌ای متشکل از آناتاز منتهی شود. نتایج سطح مقطع پوشش‌ها نشان داد که استفاده از محلول پایه استاتی منجر به تشکیل پوششی شامل دو لایه متفاوت می‌شود. در نهایت، سازوکار تشکیل پوشش و ریزساختار به‌دست‌ آمده با استفاده از الکترولیت پایه فسفاتی، مورد بحث قرار گرفت و به‌صورت نموداری نشان داده شد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigation of the Effect of Electrolyte on Microstructure and Morphology of the Plasma Electrolytic Oxidation Coatings on Ti

نویسندگان [English]

  • Elham Ahounbar 1
  • Seyed Mohammad Mousavi Khoei 2 3
  • Mustafa Ürgen 4

1 Ph. D., Department of Materials and Metallurgical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Tehran, Iran

2 Associate Professor, Department of Materials and Metallurgical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Tehran, Iran|Associate Professor, Department of Materials and Metallurgical Engineering, Amirkabir University

3 Associate Professor, Department of Materials and Metallurgical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Tehran, Iran|Associate Professor, Department of Materials and Metallurgical Engineering, Amirkabir University

4 Professor, Department of Metallurgical and Materials Engineering, Istanbul Technical University, Istanbul, Istanbul, Turkey

چکیده [English]

Abstract     The porous ceramic layers of TiO2 were synthesized on Titanium through Plasma Electrolytic Oxidation (PEO) process, using three different electrolytes including hydroxide-based, acetate-based, and phosphate-based solutions. The effects of utilizing different electrolytes on the phase arrangement and microstructural characteristics of the ceramic coatings were then studied using X-ray diffraction, field emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The results showed that utilizing a KOH-based electrolyte can lead to a heterogeneous structure while the layer that is formed during the PEO process in the acetate-based electrolyte can provide large homogeneous pores in the matrix of rutile-TiO2 and CaTiO3 phases. Using the phosphate-based electrolyte could cause an optimum porous layer consists of anatase-TiO2. The results of cross-section of the samples showed that utilizing the acetate-based electrolyte can lead to formation of the PEO coating including two sublayers. The formation mechanism and microstructural outcome of using phosphate-based electrolyte were finally discussed and graphically illustrated.

کلیدواژه‌ها [English]

  • Titanium
  • Ceramic Coating
  • Plasma electrolytic oxidation
  • Phosphate-Based Electrolyte
  • Microstructure
  1. Gosavi, S. S., Gosavi, S. Y., Alla, R., "Titanium: A miracle metal in dentistry", Trends in Biomaterials & Artificial Organs, Vol. 27, No. 1, (2013), 42-46. https://www.biomaterials.org.in/tibao/index.php/tibao/article/view/239
  2. Uporabo, B., "A review of the surface modifications of titanium alloys for biomedical applications", Materiali in Tehnologije, Vol. 51, (2017), 181-193. https://doi.org/10.17222/mit.2015.348
  3. Ghorbani, M., Afshar, A., Ehsani, N., Saeri, M., Sorrell, C., "Interface characterization of plasma sprayed hydroxyapatite coat on ti-6al-4v", International Journal of Engineering Transactions B, Vol. 15, No. 2, (2002), 173-182. http://www.ije.ir/article_71359_7d6084c2529a48cd3153f53ea18b2d24.pdf
  4. Jemat, A., Ghazali, M. J., Razali, M., Otsuka, Y., "Surface modifications and their effects on titanium dental implants", BioMed Research International, Vol. 2015, Article ID 791725, (2015). https://doi.org/10.1155/2015/791725
  5. Podlesak, H., Pawlowski, L., Haese, R., Laureyns, J., Lampke, T., Bellayer, S., "Advanced microstructural study of suspension plasma sprayed hydroxyapatite coatings", Journal of Thermal Spray Technology, Vol. 19, (2010), 657-664. https://doi.org/10.1007/s11666-010-9471-6
  6. Samiee, M., Seyedraoufi, Z. S., Eshraghi, M. J., "Investigation of properties of TiO2/MgO dual layer thin film formed by magnetron sputtering on Mg alloy", Journal of Advanced Materials and Technologies, Vol. 9, (2020), 1-9. https://doi.org/10.30501/JAMT.2020.211991.1063
  7. Liu, X., Chu, P. K., Ding, C., "Surface modification of titanium, titanium alloys, and related materials for biomedical applications", Materials Science and Engineering: R: Reports, Vol. 47, No. 3-4, (2004), 49-121. https://doi.org/10.1016/j.mser.2004.11.001
  8. Civantos, A., Martinez-Campos, E., Ramos, V., Elvira, C., Gallardo, A., Abarrategi, A., "Titanium coatings and surface modifications: Toward clinically useful bioactive implants", ACS Biomaterials Science & Engineering, Vol. 3, No. 7, (2017) 1245-1261. https://doi.org/10.1021/acsbiomaterials.6b00604
  9. Spriano, S., Yamaguchi, S., Baino, F., Ferraris, S., "A critical review of multifunctional titanium surfaces: New frontiers for improving osseointegration and host response, avoiding bacteria contamination", Acta Biomaterialia, Vol. 79, (2018), 1-22. https://doi.org/10.1016/j.actbio.2018.08.013
  10. Yerokhin, A., Nie, X., Leyland, A., Matthews, A., "Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti–6Al–4V alloy", Surface and Coatings Technology, Vol. 130, No. 2-3, (2000), 195-206. https://doi.org/10.1016/S0257-8972(00)00719-2
  11. Salehi, D. D., Ehteshamzadeh, M., Asadi, Z. M., "Microstructure and corrosion performance of silica coatings on aluminum surface prepared by plasma electrolysis technique", International Journal of Engineering, Vol. 22, No. 3, (2009), 291-298. http://www.ije.ir/article_71804_cdf65ff844e087788b147388d569e144.pdf
  12. Baghdadabad, D. M., Baghdadabad, A. R. M., Khoei, S. M. M., "Characterization of bioactive ceramic coatings synthesized by plasma electrolyte oxidation on AZ31 magnesium alloy having different Na2SiO3. 9H2O concentrations", Materials Today Communications, Vol. 25, (2020), 101642. https://doi.org/10.1016/j.mtcomm.2020.101642
  13. Fattah-Alhosseini, A., Keshavarz, M. K., Molaei, M., Gashti, M. O., "Plasma electrolytic oxidation (PEO) process on commercially pure Ti surface: Effects of electrolyte on the microstructure and corrosion behavior of coatings", Metallurgical and Materials Transactions A, 49, (2018), 4966-4979. https://doi.org/10.1007/s11661-018-4824-8
  14. Curran, J., "Plasma electrolytic oxidation for surface protection of aluminium, magnesium and titanium alloys", Transactions of the IMF, Vol. 89, No. 6, (2011), 295-297. https://doi.org/10.1179/174591911X13188464808830
  15. Lu, X., Mohedano, M., Blawert, C., Matykina, E., Arrabal, R., Kainer, K. U., Zheludkevich, M. L., "Plasma electrolytic oxidation coatings with particle additions–A review", Surface and Coatings Technology, Vol. 307, (2016), 1165-1182. https://doi.org/10.1016/j.surfcoat.2016.08.055
  16. Sobolev, A., Kossenko, A., Borodianskiy, K., "Study of the effect of current pulse frequency on Ti-6Al-4V alloy coating formation by micro arc oxidation", Materials, Vol. 12, No. 23, (2019), 3983. https://doi.org/10.3390/ma12233983
  17. Simchen, F., Sieber, M., Kopp, A., Lampke, T., "Introduction to plasma electrolytic oxidation—An overview of the process and applications", Coatings, Vol. 10, No. 7, (2020), 628. https://doi.org/10.3390/coatings10070628
  18. Simchen, F., Sieber, M., Lampke, T., "Electrolyte influence on ignition of plasma electrolytic oxidation processes on light metals", Surface and Coatings Technology, Vol. 315, (2017), 205-213. https://doi.org/10.1016/j.surfcoat.2017.02.041
  19. Blawert, C., Heitmann, V., Dietzel, W., Nykyforchyn, H., Klapkiv, M., "Influence of electrolyte on corrosion properties of plasma electrolytic conversion coated magnesium alloys", Surface and Coatings Technology, Vol. 201, No. 21, (2007), 8709-8714. https://doi.org/10.1016/j.surfcoat.2006.07.169
  20. Ikonopisov, S., "Theory of electrical breakdown during formation of barrier anodic films", Electrochimica Acta, Vol. 22, No. 10, (1977), 1077-1082. https://doi.org/10.1016/0013-4686(77)80042-X
  21. Ahounbar, E., Khoei, S. M. M., Omidvar, H., "Characteristics of in-situ synthesized hydroxyapatite on TiO2 ceramic via plasma electrolytic oxidation", Ceramics International, Vol. 45, No. 3, (2019), 3118-3125. https://doi.org/10.1016/j.ceramint.2018.10.206
  22. Venkateswarlu, K., Hari, J., Sreekanth, D., Sandhyarani, M., Bose, A., Rameshbabu, N., "Effect of micro arc oxidation treatment time on in-vitro corrosion characteristics of titania films on Cp Ti", International Journal of Bioscience, Biochemistry and Bioinformatics, Vol. 2, No. 6, (2012), 421. https://doi.org/10.7763/IJBBB.2012.V2.146
  23. Yerokhin, A., Nie, X., Leyland, A., Matthews, A., Dowey, S., "Plasma electrolysis for surface engineering", Surface and Coatings Technology, Vol. 122, No. 2-3, (1999), 73-93. https://doi.org/10.1016/S0257-8972(99)00441-7
  24. Mathis, A., Rocca, E., Veys-Renaux, D., Tardelli, J., "Electrochemical behaviour of titanium in KOH at high potential", Electrochimica Acta, Vol. 202, (2016), 253-261. https://doi.org/10.1016/j.electacta.2015.11.027
  25. Hussein, R., Nie, X., Northwood, D., "An investigation of ceramic coating growth mechanisms in plasma electrolytic oxidation (PEO) processing", Electrochimica Acta, Vol. 112, (2013), 111-119. https://doi.org/10.1016/j.electacta.2013.08.137
  26. E., Mousavi Khoei, S. M., Urgen, M., Shokouhimehr, M., "Characteristics of the hierarchical porous TiO2 layer synthesized on Ti via plasma electrolytic oxidation: Role of the applied voltage", Cermics International, Vol. 47, No. 6, (2021), 8279-8289. https://doi.org/10.1016/j.ceramint.2020.11.189
  27. Mirjalili, F., Manafi, S., Farahbakhsh, I., "Preparation and characterization of TiO2 nanoparticles prepared by sol-gel method", Advanced Ceramics Progress, Vol. 3, No. 3, (2017), 38-47. https://doi.org/10.30501/ACP.2017.90757
  28. Khan, R. H., Yerokhin, A., Matthews, A., "Structural characteristics and residual stresses in oxide films produced on Ti by pulsed unipolar plasma electrolytic oxidation", Philosophical Magazine, Vol. 88, No. 6, (2008), 795-807. https://doi.org/10.1080/14786430801968603
  29. Zhang, W., Du, K., Yan, C., Wang, F., "Preparation and characterization of a novel Si-incorporated ceramic film on pure titanium by plasma electrolytic oxidation", Applied Surface Science, Vol. 254, No. 16, (2008), 5216-5223. https://doi.org/10.1016/j.apsusc.2008.02.047
  30. Wang, Y., Zeng, L., Zhang, H., Xiang, J., Zhang, S., Chang, W., Zhang, R., Wang, Q., Sheng, Y., Zhao, Y., "Investigation of zinc and phosphorus elements incorporated into micro-arc oxidation coatings developed on Ti-6Al-4V alloys", Materials, Vol. 11, No. 3, (2018), 344. https://doi.org/10.3390/ma11030344
  31. Hanaor, D. A., Sorrell, C. C., "Review of the anatase to rutile phase transformation", Journal of Materials Science, Vol. 46, No. 4, (2011), 855-874. https://doi.org/10.1007/s10853-010-5113-0
  32. Chu, P. J., Yerokhin, A., Matthews, A., He, J., "Microstructural characterisation of porous TiO2 ceramic coatings fabricated by plasma electrolytic oxidation of Ti", Advanced Ceramic Coatings and Materials for Extreme Environments III, Ceramic Engineering and Science Proceedings, edited by Lin, H. T., Hwang, T., Kirihara, S., Widjaja, S., Proceedings of 37th International Conference Expo on ‘Advanced Ceramics and Composites', (2013), 117-127. https://doi.org/10.1002/9781118807651.ch12
  33. Venkateswarlu, K., Rameshbabu, N., Sreekanth, D., Sandhyarani, M., Bose, A., Muthupandi, V., Subramanian, S., "Role of electrolyte chemistry on electronic and in vitro electrochemical properties of micro-arc oxidized titania films on Cp Ti", Electrochimica Acta, Vol. 105, (2013), 468-480. https://doi.org/10.1016/j.electacta.2013.05.032
  34. Erfanifar, E., Aliofkhazraei, M., Fakhr Nabavi, H., Sharifi, H., Sabour Rouhaghdam, A., "Growth kinetics and morphology of plasma electrolytic oxidation coating on aluminum", Materials Chemistry and Physics, Vol. 185, (2017), 162-175. https://doi.org/10.1016/j.matchemphys.2016.10.019