نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشجوی کارشناسی، گروه مهندسی الکترونیک، دانشکده مهندسی برق، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، تهران، ایران

2 دانشجوی کارشناسی ارشد، گروه مهندسی الکترونیک، دانشکده مهندسی برق، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، تهران، ایران

3 دانشیار، گروه مهندسی الکترونیک، دانشکده مهندسی برق، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، تهران، ایران

چکیده

ماده چهارگانه Cu2ZnSnS4 (CZTS)، به­دلیل برخورداری از عناصر سازنده غیرسمّی و همچنین فراوانی آن­ها روی زمین، در زمینه سلول‌های خورشیدی مورد توجه بسیاری از پژوهشگران قرار گرفته است. در این مقاله، خواص نوری و الکتریکی ساختار خالص و آلایش­ شده CZTS با عناصر گروه پنجم جدول تناوبی به­ کمک نظریه تابع چگالی و تقریب GGA بررسی شد. مقایسه نمودارهای چگالی حالات الکترون‌ها و ساختار نواری در حالت توده‌ای خالص و آلایش ­شده با نیتروژن و فسفر، حاکی از کاهش گاف نواری مستقیم ساختار بود. مطالعه خواص نوری نشان داد که ضریب جذب از مقدار  cm-1104 × 1/7 برای ساختار خالص به مقادیر 104 × 12 و cm-1104 × 8 به‌ترتیب به­ ازای جایگزینی نیتروژن و فسفر با اتم گوگرد، برای فوتون‌های کم‌انرژی افزایش یافت. جانشینی اتم‌های آرسنیک، آنتیموان و بیسموت به‌جای اتم قلع با کمترین انرژیِ تشکیل، به­ دلیل تبهگنی ترازها سبب ایجاد تراز ناخالصی در گاف نواری ‌شد. برای فوتون‌های کم‌انرژی در ساختار خالص، با افزایش تعداد حالات انتقال الکترون از نوار ظرفیت به هدایت، به ضریب جذب تا مقدار متوسط cm-1 104 × 5/2 افزوده شد. درنتیجه، کاهش گاف نواری در برخی موارد و افزایش ضریب جذب برای فوتون‌های کم‌انرژی بعد از افزودن ناخالصی، سبب بهبود کارایی ساختار CZTS به‌عنوان لایه جاذب در سلول‌های خورشیدی می‌شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigation of Electrical and Optical Properties of CZTS with Doping of the Fifth Group Elements of the Periodic Table: A Density Functional Theory Study

نویسندگان [English]

  • Milad Barati 1
  • Nima Nouri 2
  • Negin Manavizadeh 3

1 B. Sc. Student, Department of Electronics, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Tehran, Iran

2 M. Sc. Student, Department of Electronics, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Tehran, Iran

3 Associate Professor, Deprtment of Electronics, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Tehran, Iran

چکیده [English]

Cu2ZnSnS4 (CZTS), a quaternary material, has attracted the attention of many solar cell researchers due to its non-toxic constituents as well as their abundance on Earth. In this paper, the optical and electrical properties of the pure structure doped with the elements of the fifth group of the periodic table were investigated using the density functional theory and GGA approximation. Comparison of density of states for electrons in addition to band structures in both pure, nitrogen-doped, and phosphorus-doped bulk revealed a reduction in the direct band gap of the structure. The study of the obtained optical properties indicated the absorption coefficient increased from  for the pure structure to  and  , respectively, for the replacement of nitrogen and phosphorus with sulfur atoms considering photons with lower energy. Substitution of arsenic, antimony and bismuth atoms instead of tin atoms, which has the lowest formation energy, causes an impurity level in the band gap due to the deganarated states. As a result, by increasing the number of electron transfer states from the valence to the conduction band, the absorption coefficient is increased to an average of for photons with lower energy in the pure structure. Consequently, reducing the gap in some cases, as well as increasing the absorption coefficient for low-energy photons after the addition of impurities, improves the performance of the CZTS plant as an adsorbent layer in solar cells.
 

کلیدواژه‌ها [English]

  • CZTS
  • Formation Energy
  • Density of State
  • Optical Properties
  1. Wexler, R. B., Gautam, G. S., Carter, E. A., "Exchange-correlation functional challenges in modeling quaternary chalcogenides", Physical Review B, Vol. 102, No. 5, (2020). https://doi.org/10.1103/PhysRevB.102.054101
  2. Mitzi, D. B., Gunawan, O., Todorov, T. K., Wang, K., Guha, S., "The path towards a high-performance solution-processed kesterite solar cell", Solar Energy Materials and Solar Cells, Vol. 95, No. 6, (2011), 1421-1436. https://doi.org/10.1016/j.solmat.2010.11.028
  3. Ahluwalia, G. K., Applications of chalcogenides: S, Se, and Te, Springer, (2017). https://doi.org/10.1007/978-3-319-41190-3
  4. Avendaño, C. A. M., Mathews, N. R., Pal, M., Delgado, P., Mathew, X., "Structuralevolution ofmultilayer SnS/Cu/ZnS stack to phase-pure Cu2ZnSnS4 thin films by thermal processing", ECS Journal of Solid State Science and Technology, Vol. 4, No. 3, (2015), 91-96. https://doi.org/10.1149/2.0171503jss
  5. Dobrozhan, O., Baláž, M., Vorobiov, S., Baláž, P., Opanasyuk, A., "Morphological, structural, optical properties and chemical composition of flexible Cu2ZnSnS4 thin films obtained by ink-jet printing of polyol-mediated nanocrystals", Journal of Alloys and Compounds, Vol. 842, (2020). https://doi.org/10.1016/j.jallcom.2020.155883
  6. Ki, W., Hillhouse, H. W., "Earth‐abundant element photovoltaics directly from soluble precursors with high yield using a non‐toxic solvent",Advanced Energy Materials, Vol. 1, No. 5, (2011), 732-735. https://doi.org/10.1002/aenm.201100140
  7. Kato, T., Hiroi, H., Sakai, N., Muraoka, S., Sugimoto, H., "Characterization of front and back interfaces on Cu2ZnSnS4 thin-film solar cells", Proceedings of 27th European Photovoltaic Solar Energy Conference and Exhibition, (2012), 2236-2239. http://dx.doi.org/10.4229/27thEUPVSEC2012-3CO.4.2
  8. Wang, W., Winkler, M. T., Gunawan, O., Gokmen, T., Todorov, T. K., Zhu, Y., Mitzi, D. B., "Device characteristics of CZTSSe thin‐film solar cells with 12.6 % efficiency", Advanced Energy Materials, Vol. 4, No. 7, (2014). https://doi.org/10.1002/aenm.201301465
  9. Zhang, J., Liao, J., Shao, L. X., Xue, S. W, Wang, Z. G., "Lithium/silver-doped Cu2ZnSnS4 with tunable band gaps and phase structures: a first-principles study", Chinese Physics Letters, Vol. 35, No. 8, (2018), 083101. https://doi.org/10.1088/0256-307X/35/8/083101
  10. Ojeda-Durán, E., Monfil-Leyva, K., Andrade-Arvizu, J., Becerril-Romero, I., Sánchez, Y., Fonoll-Rubio, R., Guc, M., Jehl, Z., Luna-López, J. A., Muñoz-Zurita, A. L., Hernández-de la Luz, J. A. D., "CZTS solar cells and the possibility of increasing VOC using evaporated Al2O3 at the CZTS/CdS interface", Solar Energy, Vol. 198, (2020), 696-703. https://doi.org/10.1016/j.solener.2020.02.009
  11. Sarswat, P. K, Free, M. L., "The effects of dopant impurities on Cu2ZnSnS4 system raman properties", Journal of Materials Science, 50, No. 4, (2015), 1613-1623. https://doi.org/10.1007/s10853-014-8722-1
  12. Xiao, W., Wang, J. N., Zhao, X. S., Wang, J. W., Huang, G. J., Cheng, L., Jiang, L. J., Wang, L. G., "Intrinsic defects and Na doping in Cu2ZnSnS4: A density-functional theory study", Solar Energy, Vol. 116, (2015), 125-132. https://doi.org/10.1016/j.solener.2015.04.005
  13. Gautam, G. S., Senftle, T. P., Carter, E. A., "Understanding the effects of Cd and Ag doping in Cu2ZnSnS4 solar cells", Chemistry of Materials, Vol. 30, No. 14, (2018), 4543-4555. https://doi.org/10.1021/acs.chemmater.8b00677
  14. Zhang, X., Han, M., Zeng, Z., Duan, Y., "The role of Sb in solar cell material Cu2ZnSnS4", Journal of Materials Chemistry A, Vol. 5, No. 14, (2017), 6606-6612. https://doi.org/10.1039/C7TA01090G
  15. Garcia, A., Papiro, N., Akhtar, A., Artacho, E., Blum, V., Bosoni, E., Brandimarte, P., Brandbyge, M., Cerda, J. I., Corsetti, F., Cuadrado, R., Dikan, V., Ferrer, J., Garcia-Fernandez, P. ,Garcia-Suarez, V. M., Garcia, S., Huhs, G., Illera, S., Korytar, R., Koval, P., Lebedeva, I., Lin, L., Lopez-Tarifa, P., Mayo, S. G., Mohr, S., Ordejon, P., Postonikov, A., Pouillon, Y., Pruneda, M., Robles, R., Sanchez-Portal, D., Soler, J. M., Ullah, J., Wen-Zhe Yu, V., Junquera, J., "Siesta: Recent developments and applications", The Journal of Chemical Physics, Vol. 152, No. 20, (2020). https://doi.org/10.1063/5.0005077
  16. Kistanov, A. A., Cao, W., Huttula, M., Khandiullin, S. Kh., Korznikova, E. A., Smirnov, A., Wang, X., Zhuk, S., "Impact of various dopant elements on the electronic structure of Cu2ZnSnS4 (CZTS) thin films: a DFT study", Eng. Comm., Vol. 22, No. 35, (2020), 5786-5791. https://doi.org/10.1039/d0ce00802h
  17. Rezaie, S., Bafghi, Z. G., Manavizadeh, N., "Carbon-doped ZnO nanotube-based highly effective hydrogen gas sensor: A first-principles study", International Journal of Hydrogen Energy, 45, No. 27, (2020), 14174-14182. https://doi.org/10.1016/j.ijhydene.2020.03.050
  18. Rezaie, S., Bafghi, Z. G., Manavizadeh, N., Nadimi, E., "Hydrogen gas sensing mechanism in zinc oxidenanowire and nanotube: A density functionaltheory study", Proceedings of 27th Iranian Conference on Electrical Engineering (ICEE), Iran, (2019). https://doi.org/10.1109/IranianCEE.2019.8786654
  19. Ghafouri, T., Tahmasebi, R., Manavizadeh, N., Nadimi, E., "Gas sensing properties of silicon nanowires with different cross-sectional shapes toward ammonia: A first-principles study", Journal of Nanoparticle Research, 21, No. 7, (2019), 157. https://doi.org/10.1007/s11051-019-4599-x
  20. Kalantarian, M. M., Yousefi Mashhour, H., "Evaluating electrical properties, band gaps and rate capability of Li2MSiO4 (M= Mn, Fe, Co, Ni) cathode materials using DOS diagrams", Advanced Ceramics Progress, 5, No. 3, (2019), 30-35. https://doi.org/10.30501/ACP.2019.95358
  21. Perdew, J. P., Burke, K., Ernzerhof, M., "Generalized gradient approximation made simple", Physical Review Letters, 77, No. 18, (1996), 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865
  22. Van de Walle, C. G, Neugebauer, J., "First-principles calculations for defects and impurities:Applications to III-nitrides", Journal of Applied Physics, 95, No. 8, (2004), 3851-3879. https://doi.org/10.1063/1.1682673
  23. Barati, M., Nouri, N., Manavizadeh, N., "Investigation of bismuth dopingeffects on CZTS properties: A density functional theory study", Proceedings of 28th Iranian Conference on Electrical Engineering (ICEE), Iran, (2020). https://10.1109/ICEE50131.2020.9261048
  24. Nagoya, A., Asahi, R., Wahl, R, Kresse, G., "Defect formation and phase stability of Cu2ZnSnS4 photovoltaic material", Physical Review B, Vol. 81, No. 11, (2010), 113202. https://doi.org/10.1103/PhysRevB.81.113202
  25. West, D., Sun, Y. Y., Zhang, S. B., "Importance of the correct fermi energy on the calculation of defect formation energies in semiconductors", Applied Physics Letters, Vol. 101, No. 8, (2012). https://doi.org/10.1063/1.4745779
  26. Zhao, Z., Zhao, X., "First-principle study on doping effects of sodium in kestrite Cu2ZnSnS4", Inorganic Chemistry, Vol. 53, No. 17, (2014), 9235-9241. https://doi.org/10.1021/ic5013268
  27. Singh, O. P., Sharma, A., Gour, K. S., Husale, S., Singh, V. N., "Fast switching response of Na-doped CZTS photodetector from visible to NIR range", Solar Energy Materials and Solar Cells, Vol. 157, (2016), 28-34. https://doi.org/10.1016/j.solmat.2016.04.058