نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، بخش مهندسی مواد، دانشکده مهندسی، دانشگاه شیراز، شیراز، فارس، ایران

2 دانشیار، بخش مهندسی مواد، دانشکده مهندسی، دانشگاه شیراز، شیراز، فارس، ایران

چکیده

 از دیرباز، مبدل ­های انرژی الکترومغناطیس، به‌عنوان تأمین‌­کننده انرژی الکتریکی، مورد استفاده قرار می­ گرفتند. طراحی و کاربرد این مبدل‌ها، به ­دلیل به‌کارگیری مغناطیس ­های جامد، جهت القای مغناطیسی در شکل­ ها و بسامدهای محیطی مختلف، محدود شده است. اخیراً، سیال ­های مغناطیسی به‌عنوان جایگزین مغناطیس جامد، برای کاربرد این مبدل‌ها در محدوده بسامدی پایین و طراحی­ های متفاوت، مورد توجه قرار گرفته ­اند. در این پژوهش، هدف بر آن بوده است که مبدلی ساده، با استفاده از فروسیال مگنتایت، ساخته شود. برای این منظور، نانوذرات مگنتایت، به روش هم­ رسوبی شیمیایی، سنتز و سپس، اصلاح سطحی آن‌ها، با اولئیک اسید (روغن آفتابگردان)، انجام شد. برای بررسی ویژگی­ های ذرات سنتزشده، از روش­ های شناسایی XRD، FTIR، VSM و SEM استفاده شد. متوسط اندازه ذرات، حدود 70 نانومتر و مغناطش اشباع آن‌ها،  emu/gr63/41 بود. سه نوع سیال آب، نفت سفید و روغن ترمز، به‌منظور ساخت فروسیال پایدار مگنتایت، استفاده شد. پایدارترین فروسیال، فروسیال بر پایه روغن ترمز بود. تبدیل نوسانات مکانیکی به ولتاژ القایی، توسط مبدل طراحی­شده، انجام شد و نتایج نشان داد ولتاژ القاء شده در مبدل، با افزایش بسامد نوسانات و میدان مغناطیسی اعمالی، افزایش می‌یابد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Fabrication of a Converter for Converting of Vibrational Energy to Electrical Energy Using Fe3O4 Ferrofluid

نویسندگان [English]

  • Marzeh Asna Ashary 1
  • Babak Hashemi 2

1 M. Sc. Student, Materials Science and Engineering Department, School of Engineering, Shiraz University, Shiraz, Fars, Iran

2 Associate Professor, Materials Science and Engineering Department, School of Engineering, Shiraz University, Shiraz, Fars, Iran

چکیده [English]

Abstract     Electromagnetic energy converters have been used as electrical energy suppliers. The use of solid magnets in these devices, for producing of magnetic induction, has produced difficulties for the design and application of these systems in various forms and frequencies. Magnetic fluids as a substitute for solid magnets have recently been considered for the use of these devices in low frequency ranges and different 
designs. In this study, a simple vibrational energy converter was designed using magnetite ferrofluid. For this purpose, the nanoparticles of magnetite were synthesized by co-precipitation method and surface modified by oleic acid. The XRD, FTIR, VSM testes and SEM studies were done to investigate properties of the samples. The nano magnetite particles had the average size of 70 nm and the saturation magnetization of 41.63 emu/gr. Three types of fluid including water, kerosene and brake oil were used to make magnetite stable ferrofluid. The most stable ferrofluid was brake oil based ferrofluid. The fabricated energy converter converted mechanical vibrations to induction voltage and voltage increased with frequency of vibration and applied magnetic field.

کلیدواژه‌ها [English]

  • Magnetite
  • Co-precipitation
  • Oleic acid
  • ferrofluid
  • Energy Harvester
  1. Beeby, S. P., Torah, R. N., Tudor, M. J., Glynne-Jones, P., O'Donnell, T., Saha, C. R., Roy, S., "A micro electromagnetic generator for vibration energy harvesting", Journal of Micromechanics and Microengineering, Vol. 17, No. 7, (2007), 1257. https://doi.org/10.1088/0960-1317/17/7/007
  2. Zhu, D., Tudor, M. J., Beeby, S. P., "Strategies for increasing the operating frequency range of vibration energy harvesters: A review", Measurement Science and Technology, Vol. 21, No. 2, (2009), 022001. https://doi.org/10.1088/0957-0233/21/2/022001
  3. Alazemi, S. F., Bibo, A., Daqaq, M. F., "A ferrofluid-based energy harvester: An experimental investigation involving internally-resonant sloshing modes", The European Physical JournalSpecial Topics, Vol. 224, No. 14-15, (2015), 2993-3004. https://doi.org/10.1140/epjst/e2015-02602-9
  4. Elvin, N. G., Elvin, A. A., "An experimentally validated electromagnetic energy harvester", Journal of Sound and Vibration, Vol. 330, No. 10, (2011), 2314-2324. https://doi.org/10.1177/1045389X17754263
  5. Bibo, A., "Electromagnetic ferrofluid-based energy harvester", Physics Letters A, Vol. 376, No. 32, (2012), 2163-2166. https://doi.org/10.1016/j.physleta.2012.05.033
  6. Khairul, M., "Experimental study on fundamental mechanisms of ferro-fluidics for an electromagnetic energy harvester", Industrial & Engineering Chemistry Research, Vol. 55, No. 48, (2016), 12491-12501. https://doi.org/10.1021/acs.iecr.6b03161
  7. Raj, K., Aziz, L. M., Rosensweig, R. E., Method for manufacturing oil-based ferrofluid, Google Patents, (2000).
  8. Raj, K, Aziz, L. M., Low cost method for manufacturing ferrofluid, Google Patents, (1999).
  9. Imran, M., "Ferrofluid synthesis using oleic acid coated Fe3O4 nanoparticles dispersed in mineral oil for heat transfer applications", Materials Research Express, Vol. 5, No. 3, (2018), 036108. https://doi.org/10.1088/2053-1591/aab4d7
  10. Narayanan, T., "Ferrofluids based in magnetic nanostructures", Chaos and Complexity Letters, Vol. 7, No. 1/2, (2013), 121.
  11. Zhang, L. Y., Gu, H. C., Wang, X. M., "Magnetite ferrofluid with high specific absorption rate for application in hyperthermia", Journal of Magnetism and Magnetic Materials, Vol. 311, No. 1, (2007), 228-233. https://doi.org/10.1016/j.jmmm.2006.11.179
  12. Karimi, Z., Karimi, L., Shokrollahi, H., "Nano-magnetic particles used in biomedicine: Core and coating materials", Materials Science and Engineering: C, Vol. 33, No. 5, (2013), 2465-2475. https://doi.org/10.1016/j.msec.2013.01.045
  13. Oh, D. W., "Analysis of electromotive force characteristics and device implementation for ferrofluid based energy harvesting system", In Electrical Machines and Systems (ICEMS), 17th IEEE International Conference, (2014). https://doi.org/10.1109/ICEMS.2014.7013820
  14. Seol, M. L., "Ferrofluid-based triboelectric-electromagnetic hybrid generator for sensitive and sustainable vibration energy harvesting", Nano Energy, Vol. 31, (2017), 233-238. https://doi.org/10.1016/j.nanoen.2016.11.038
  15. Liu, Q., Alazemi, S. F., Daqaq, M. F., Li, G., "A ferrofluid based energy harvester: Computational modeling, analysis, and experimental validation", Journal of Magnetism and Magnetic Materials, Vol. 449, (2019), 105-118. https://doi.org/10.1016/j.jmmm.2017.09.064
  16. Valenzuela, R., Fuentes, M. C., Parra, C., Baeza, J., Duran, N., Sharma, S. K., Knobel, M., Freer, J., "Influence of stirring velocity on the synthesis of magnetite nanoparticles (Fe3O4) by the co-precipitation method", Journal of Alloys and Compounds, Vol. 488, No. 1, (2009), 227-231.https://doi.org/10.1016/j.jallcom.2009.08.087
  17. Ramimoghadam, D., "Statistical optimization of effective parameters on saturation magnetization of nanomagnetite particles", Journal of Magnetism and Magnetic Materials, Vol. 393, (2015), 30-35. http://doi.org/10.1016/j.jmmm.2015.05.047
  18. Silvério Neto, W., Simões Dutra, G. V., Thyago Jensen, A., Alves Araújo, O., Garg, V., de Oliveira, A. C., Fonseca Valadares, L., de Souza Jr., F. G., Machado, F., "Superparamagnetic nanoparticles stabilized with free-radical polymerizable oleic acid-based coating", Journal of Alloys and Compounds, Vol. 739, (2018), 1025-1036. https://doi.org/10.1016/j.jallcom.2017.12.338
  19. Smith, W. H., Digital array scanned interferometer, Google Patents, (1990).
  20. Mahdavi, M., "Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications", Molecules, Vol. 18, No. 7, (2013), 7533-7548. https://doi.org/10.3390/molecules18077533
  21. Namduri, H., Nasrazadani, S., "Quantitative analysis of iron oxides using Fourier transform infrared spectrophotometry", Corrosion Science, Vol. 50, No. 9, (2008), 2493-2497. http://doi.org/10.1016/j.corsci.2008.06.034
  22. Savitha, S., Iyengar, S. S., Ananthamurthy, S., Bhattacharya, S., "Studying effect of carrier fluid viscosity in magnetite based ferrofluids using optical tweezers", In IOP Conference Series: Materials Science and Engineering, IOP Publishing, (2018). https://doi.org/10.1088/1757-899X/310/1/012098
  23. Vasilescu, C., "High concentration aqueous magnetic fluids: Structure, colloidal stability, magnetic and flow properties", Soft Matter, Vol. 14, No. 32, (2018), 6648-6666. https://doi.org/10.1039/c7sm02417
  24. Alazemi, S. F., Xu. Y., Daqaq, M. F., "Harvesting energy from the sloshing motion of ferrofluids in an externally excited container: Analytical modeling and experimental validation", Physics of Fluids, Vol. 28, No. 7, (2016), 077101. https://doi.org/10.1063/1.4954787
  25. Alazemi, S. F., Daqaq, M. F., "Ferrofluids for concurrent vibration absorption and energy harvesting", In ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems, American Society of Mechanical Engineers, (2013).