نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 کارشناسی ارشد، دانشکده معماری و هنر، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، تهران، ایران

2 استادیار، گروه باستان‌شناسی،واحد ابهر، دانشگاه آزاد اسلامی، ابهر، زنجان، ایران

3 استادیار، پژوهشکده نیمه هادی‌ها، پژوهشگاه مواد و انرژی، مشکین دشت، البرز، ایران

چکیده

در این پژوهش، روشی جدید برای ضدباکتریایی کردن پارچه‌های پنبه‌ای تاریخی ارزیابی شد. با توجه به این‌که تاکنون نتایج مطلوبی از کاربرد نانومواد در حوزه حفاظت از منسوجات تاریخی ایران ثبت نشده است، خاصیت ضدباکتریایی نانوکلوئید دی‌اکسید تیتانیوم روی پارچه‌های پنبه‌ای تاریخی بررسی شد. نمونه آزمایشی با شبیه‌سازی نمونه مطالعاتی، تهیه و سپس نانوکلوئید دی‌اکسید تیتانیوم روی آن، افشانش شد و نمونه‌ها به‌مدت ۷۲ ساعت در شرایط پیرسازی قرار گرفتند. برای مشاهده چگونگی توزیع نانوذرات روی سطح الیاف پارچه، از میکروسکوپ الکترونی روبشی-نشر میدانی (FE-SEM) و برای کنترل خاصیت ضدباکتریایی آن، از کشت باکتری در محیط پایه نمکی آگار مغذی استفاده شد. میکروسکوپ الکترونی، وجود نانوذرات روی سطح الیاف پارچه را به‌خوبی نشان داد. در ادامه، کشت باکتری‌های سودوموناس آئروژینوزا و باسیلوس سابتیلیس در محیط پایه نمکی، ۶۰ درصد کاهش رشد سودوموناس آئروژینوزا و ۳۰ درصد کاهش رشد باکتری باسیلوس سابتیلیس در حضور نانومواد را حاصل کرد که با بهینه‌سازی روش، کیفیت و مقدار نانوذرات، قابل ارتقاست. در ضمن، با توجه به تغییر رنگ مشاهده‌شده در پارچه پس از پیرسازی نمونه‌ها و اهمیت این امر در حفاظت آثار تاریخی، بهینه‌سازی‌ محلول کلوئیدی استفاده‌شده، ضروری به‌نظر می‌رسد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigation of Antibacterial Properties of Titanium Dioxide Nano Colloids on the Surface of Historical Cotton Fabrics

نویسندگان [English]

  • Elham Poorahmadi 1
  • Hayedeh Khamseh 2
  • Amirali Youzbashi 3

1 M. Sc., Faculty of Architecture and Art, Science and Research Branch, Islamic Azad University, Tehran, Tehran, Iran

2 Assistant Professor, Department of Archeology, Abhar Branch, Islamic Azad University, Abhar, Zanjan, Iran

3 Assistant Professor, Department of Semiconductors, Materials and Energy Research Center (MERC), MeshkinDasht, Alborz, Iran

چکیده [English]

In this study, a new method for antibacterialization of historical cotton fabrics was evaluated. Due to the fact that the desired results of the application of nanomaterials in the field of protection of historical textiles in Iran have not been recorded so far, the antibacterial properties of titanium dioxide nanocloid on historical cotton fabrics were investigated. The experimental sample was prepared by simulating a study sample and then sprayed titanium dioxide nanocloid on it and the samples were aged for 72 hours. Scanning electron microscopy (FE-SEM) was used to observe the distribution of nanoparticles on the surface of fabric fibers and to control its antibacterial properties, bacterial culture was used in nutrient agar-based salt medium. Electron microscopy showed the presence of nanoparticles on the surface of the fabric fibers. Subsequently, culturing Pseudomonas aeruginosa and Bacillus subtilis in saline medium resulted in 60 % reduction in Pseudomonas aeruginosa growth and 30 % reduction in Bacillus subtilis in the presence of nanomaterials, which can be improved by optimizing the method, quality and number of nanoparticles. In addition, due to the observed color change in the fabric after aging of the samples and the importance of this in the preservation of historical monuments, optimization of the colloidal solution used is necessary.

کلیدواژه‌ها [English]

  • antibacterial
  • Cotton fiber
  • Titanium oxide nanoparticles
  • FE-SEM
  • Nutrient Agar
  1. Pinto, A. F., Rodrigues, J. D., "Stone consolidation: The role of treatment procedures", Journal of Cultural Heritage, Vol. 9, No. 1, (2008), 38-53. https://doi.org/10.1016/j.culher.2007.06.004
  2. Ershad-Langroudi, A., Rahimi, A., Introduction on Hybrid Nanocomposite Coatings, Naghsh Bian, Tehran, (2010). (In Farsi). https://lib1.ut.ac.ir:8443/site/catalogue/145037
  3. Horie, V., Materials for Conservation: Organic Consolidants, Adhesives and Coatings, Second Edition, Routledge Taylor & Francis Group (T&F), Thames, Oxfordshire, England, UK, (2010). https://www.abebooks.co.uk
  4. Mirzaei, M., "Nanotechnology for science and engineering", Advanced Journal Science and Engineering, Vol. 1, No. 3, (2020), 67-68. https://doi.org/10.22034/AJSE2013067
  5. Beheshtifar, M., Ershad-Langroudi, A., Fadaii, H., "Conservation evaluation of three protective siloxane coatings on a limestone sample", Proceedings of Second Conference on Materials Science and Protection of Historical and Cultural Monuments, Iranian Research Institute for Cultural Heritage, Tehran, Iran, (2-3 May, 2016). http://www.richt.ir/
  6. Ershad-Langroudi, A., Fadaii, H., Ahmadi, K., Beheshtifar, M., "Superhydrophobic siloxane based coating for enhanced protection of historical limestone surfaces", Proceedings of 12th International Seminar on Polymer Science and Technology, Islamic Azad University, Tehran, Iran, (2-5 November, 2016). https://civilica.com/doc/577924
  7. Ershad-Langroudi, A., Fadaii, H., Ahmadi, K., Beheshtifar, M., "Consolidation of historical stone by silane/siloxane treatment", Proceedings of 12th International Seminar on Polymer Science and Technology, Islamic Azad University, Tehran, Iran, (2-5 November, 2016). https://civilica.com/doc/577926
  8. Sierra-Fernandez, A., Gomez-Villalba, L. S., Rabanal, M. E., Fort, R., "New nanomaterials for applications in conservation and restoration of stony materials: A review", Materiales de Construccion, Vol. 67, No. 325, (2017), 107-125. https://doi.org/10.3989/mc.2017.07616
  9. Borsoi, G., Lubelli, B., Hees, R. V., Veiga, R., Silva, A. S., "Understanding the transport of nanolime consolidants within Maastricht limestone", Journal of Cultural Heritage, Vol. 18, (2016), 242–249. http://pure.tudelft.nl/ws/files/7547980/Borsoi_2015.pdf
  10. Rodriguez-Navarro, C., Suzuki, A., Ruiz-Agudo, E., "Alcohol dispersions of calcium hydroxide nanoparticles for stone conservation", Langmuir, Vol. 29, No. 36, (2013), 11457-11470. https://doi.org/10.1021/la4017728
  11. Zarzuela, R., Carbú, M., Gil, M. A., Cantoral, J. M., Mosquera, M. J., "CuO/SiO2 nanocomposites: A multifunctional coating for application on building stone", Material & Design, Vol. 114, (2017), 364-372. https://doi.org/10.1016/j.matdes.2016.11.009
  12. Petronella, F., Truppi, A., Ingrosso, C., Placido, T., Striccoli, M., Curri, M. L., Agostiano, A., Comparelli, R., "Nanocomposite materials for photocatalytic degradation of pollutants", Catalysis Today, Vol. 281, (2017), 85-100. https://doi.org/10.1016/j.cattod.2016.05.048
  13. Abdollahi, H., Ershad-Langroudi, A., Salimi, A., Rahimi, A., "Photocatalyst nanocomposite hybrid coatings based on TiO2-SiO2 core/shell nanoparticles: Preparation and investigation of weathering and corrosion resistance", Journal of Color Science and Technology, Vol. 3, (2013), 151-164. http://jcst.icrc.ac.ir/article_76089_ce73ab783c9283afbfdc33df1e61dc0d.pdf
  14. Kapridaki, C., Maravelaki-Kalaitzaki, P., "TiO2-SiO2-PDMS nanocomposite hydrophobic coating with self-cleaning properties for Marble protection", Progress in Organic Coatings, Vol. 76, No. 2-3, (2013), 400-410. https://doi.org/10.1016/j.porgcoat.2012.10.006
  15. Ershad-Langroudi, A., Rahimi, A., "Synthesis and characterization of nanosilica-based coatings for protection of antique articles", International Journal of Nanotechnology, Vol. 6, No. 10-11, (2009), 915-925. https://doi.org/10.1504/IJNT.2009.027555
  16. Luo, Y., Xiao, L., Zhang, X., "Characterization of TEOS/ PDMS/HA nanocomposites for application as consolidant/hydrophobic products on sandstones", Journal of Cultural Heritage, Vol. 16, No. 4, (2015), 470-478. https://doi.org/10.1016/j.culher.2014.08.002
  17. Ershad-Langroudi, A., Fadaei, H., Ahmadi, K., "A survey on applications of polymeric nanomaterials for conservation of artworks", Iranian Journal of Polymer Science & Technology, Vol. 30, No. 5, (December 2017-January 2018), 371-389. https://doi.org/10.22063/JIPST.2017.1530
  18. Alessandrini, G., Toniolo, L., Colombo, C., "Partially fluorinated acrylic copolymers as coating for calcareous stone materials", Studies in Conservation, Vol. 45, (2000), 1-6. https://doi.org/10.1179/sic.2000.45.Supplement-1.1
  19. Toniolo, L., Della Volpe, C., Brugnara, M., Poli, T., "Partially fluorinated acrylic copolymers as coatings for stone protection: Characterization and surface properties", MRS Online Proceedings Libraray (OPL), Cambridge University, Volume 712, Symposium II–Materials Issues in Art and Archaeology VI, (2002), II3.3. https://doi.org/10.1557/PROC-712-II3.3
  20. Karimi, L., Mirjalali, M., Yazdanshenas, M. E., Nazari, A., "Effect of nano TiO2 on self‐cleaning property of cross‐linking cotton fabric with succinic acid under UV irradiation", Photochemestry and Photobilogy, Vol. 86, No. 5, (2010), 1030-1037. https://doi.org/10.1111/j.1751-1097.2010.00756.x
  21. Montazer, M., Morshedi, S., "Photo bleaching of wool using nano TiO2 under daylight irradiation", Journal of Industrial and Engineering Chemistry, Vol. 20, No. 1, (2014), 83-90. https://doi.org/10.1016/j.jiec.2013.04.023
  22. Ibanescu, M., Musat, V., Textor, T., Badilita, V., Mahltig, B., "Photocatalytic and antimicrobial Ag/ZnO nanocomposites for functionalization of textile fabrics", Journal of Alloys and Compunds, 610, (2014), 245-249. https://doi.org/10.1016/j.jallcom.2014.04.138
  23. Nazari, A., Montazer, M. Dehghani-Zahedani, M. "Mothproofing of wool fabric utilizing ZnO nanoparticles optimized by statistical models", Journal of Industrial and Engineering Chemistry, Vol. 20, No. 6, (2014), 4207-4214. https://doi.org/10.1016/j.jiec.2013.12.112
  24. "Antimicrobial textiles", Collection of Nanotechnology Industrial Reports, Report No. 49, (2015). (In Farsi). https://nano.ir/index.php?ctrl=paper&actn=paper_view&id=3623&lang=1
  25. "Application of nanotechnology in the textile industry", Collection of Nanotechnology Industrial Reports, Special Headquarters for Nanotechnology Development, (2011). (In Farsi). http://indnano.ir/wp-content/uploads/11-Nanotextile.pdf
  26. Montazer, M., Seifollahzadeh, S., "Enhanced self-cleaning, antibacterial and UV protection properties of nano TiO2 treated textile through enzymatic pretreatment", Photochemistry and Photobiology, Vol. 87, No. 4, (2011), 877–883. https://doi.org/10.1111/j.1751-1097.2011.00917.x
  27. Muñoz-Bonilla, A., Fernández-García, M., "Polymeric materials with antimicrobial activity", Progress in Polymer Science, Vol. 37, No. 2, (2012), 281–339. https://doi.org/1016/j.progpolymsci.2011.08.005
  28. Noorian, S. A., Hemmatinejad, N., Bashari, A., “One-pot synthesis of Cu2O/ZnO nanoparticles at present of folic acid to improve UV-protective effect of cotton fabrics", Photochemistry and Photobiology, Vol. 91, No. 3, (2015), 510-517. https://doi.org/10.1111/php.12420
  29. Zhou, N. L., Liu, Y., Li, L., Meng, N., Huang, Y. X., Zhang, J., Wei, S. H., Shen, J., "A new nanocomposite biomedical material of polymer/clay-Cts-Ag nanocomposites", Current Applied Physics, Vol. 7, No. 1, )2007), e58-e62. https://doi.org/1016/j.cap.2006.11.016
  30. Dastjerdi, R., Montazer, M., Metal and mineral nanostructures in antimicrobial and multifunctional modification of textiles and polymers, Yazd University Publishing Center, (2012). (In Farsi). https://yazd.ac.ir/VP-000154-001-HC16
  31. Zarrineh, H., "Protection and preservation of textiles", Moghaddam Museum of University of Tehran, (2007). (In Farsi). http://museums.ut.ac.ir/Images/UserFiles/1/file/%D8%AD%D9%81%D8%A7%D8%B8%D8%AA%20%D8%A7%D8%B2%20%D9%85%D9%86%D8%B3%D9%88%D8%AC%D8%A7%D8%AA.pdf
  32. Planderlit, H. J., Werner A. I. A., Restoration of Artistic and Historical Works, Translated by Dr. Rasoul Vatandoost, University of Arts Press, (2012). (In Farsi). https://press.art.ac.ir/?product=%d8%ad%d9%81%d8%a7%d8%b8%d8%aa%d8%8c-%d9%86%da%af%d9%87%d8%af%d8%a7%d8%b1%db%8c-%d9%88-%d9%85%d8%b1%d9%85%d8%aa-%d8%a2%d8%ab%d8%a7%d8%b1-%d9%87%d9%86%d8%b1%db%8c-%d9%88-%d8%aa%d8%a7%d8%b1%db%8c%d8%ae
  33. Pardo Tula, Robinson Jane, Illustrated Guide to The Care and Maintenance of Woven and Clothing Collections, Translated by Mansoureh Azadvari, Published by the Research Institute for the Preservation and Restoration of Historical and Cultural Monuments, Tehran, (2006). (In Farsi). http://book.richt.ir/product/147/%D8%B1%D8%A7%D9%87%D9%86%D9%85%D8%A7%DB%8C-%D9%85%D8%B5%D9%88%D8%B1-%D9%85%D8%B1%D8%A7%D9%82%D8%A8%D8%AA-%D9%88-%D9%86%DA%AF%D9%87%D8%AF%D8%A7%D8%B1%DB%8C-%D8%A7%D8%B2-%D9%85%D8%AC%D9%85%D9%88%D8%B9%D9%87-%D9%87%D8%A7%DB%8C-%D8%A8%D8%A7%D9%81%D8%AA%D9%87-%D9%88-%D9%BE%D9%88%D8%B4%D8%A7%DA%A9
  34. Attari, M., "The place of new science and technologies (especially nanotechnology) in The preservation and protection of cultural heritage (with interdisciplinary systems approaches)", Art and Architecture, Repair and Research, No. 4, (2008), 7-22. (In Farsi). https://www.noormags.ir/view/fa/creator/140506
  35. Zafarnia, N. S., Habibi, S., "A review of new applications of nanotechnology in the textile industry", Proceedings of National Conference on Nanostructure, Nanoscience and Science, (February 2017). (In Farsi). https://civilica.com/doc/651914/
  36. Koolivand, Z., Institute for Iranian Contemporary Historical Studies. http://www.iichs.ir/s/5101
  37. Feller R. L., Accelerated Aging Photochemical and Thermal Aspects, Thermally Induced Oxidative Deterioration, The Getty Conservation Institute, The J. Paul Getty Trust, United States of America, (1994). http://www.getty.edu/conservation/publications_resources/pdf_publications/pdf/aging.pdf
  38. Mirjalali, F., Manafi, S., Farahbakhsh, I., "Preparation and characterization of TiO2 nanoparticles prepared by Sol-Gel method", Advanced Ceramics Progress (ACERP), Vol. 3, No. 3, (Summer 2017), 38-47. https://doi.org/10.30501/ACP.2017.90757
  39. Website of Arman Light Energy Researcher Company. http://Asepe-company.com
  40. "Antimicrobial completion of textiles using nanomaterials, part II", Comprehensive Nano Training System, (2018). (In Farsi). https://nanoeducation.ir/article-detail/%D8%AA%DA%A9%D9%85%DB%8C%D9%84/djFSZUNRYXBWUlFWcmkxWVIxVHpiQT09/
  41. Website of Iran Environmental Health. http://www.environmentalhealth.ir/
  42. "Instructions for preparation, preparation and quality control of culture media", Health Reference Laboratory, Ministry of Health and Medical Education, (2018). (In Farsi). https://ta.mui.ac.ir/sites/ta.mui.ac.ir/files/%D8%AF%D8%B3%D8%AA%D9%88%D8%B1%D8%A7%D9%84%D8%B9%D9%85%D9%84%20%D8%A2%D9%85%D8%A7%D8%AF%D9%87%20%D8%B3%D8%A7%D8%B2%DB%8C%D8%8C%20%D8%AA%D9%87%DB%8C%D9%87%20%D9%88%20%DA%A9%D9%86%D8%AA%D8%B1%D9%84%20%DA%A9%DB%8C%D9%81%DB%8C%20%D9%85%D8%AD%DB%8C%D8%B7%20%D9%87%D8%A7%DB%8C%20%DA%A9%D8%B4%D8%AA_0.pdf
  43. Fazel, M., Farbodi, M., "Prepration of polyaniline-carboxymethyl cellulose-TiO2 hybrif nanocomposite and investigation of its physicochemical & antibacterial properties", Journal of Advanced Materials and Technologies (JAMT), Vol. 5, No. 2, (2016), 31-39. (In Farsi). https://doi.org/30501/JAMT.2637.70329
  44. AATCC 100-Antimicrobial Fabric Test. http://microchemlab.com/test/aatcc-100-antimicrobial-fabric-test
  45. Zarrabian, M., Aligholi, M., Loghmani Nejad, N., "Evaluation of reduction in intracanal bacteria by three instrumentation technique: K-type manual system file, rotary Race and Profile system", Journal of Dentistry (Tehran University of Medical Sciences), Vol. 18, No. 2, (2005), 44-52. http://jdm.tums.ac.ir/article-1-321-en.html