نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی برق، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، تهران، ایران

2 دانشیار، دانشکده مهندسی برق، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، تهران، ایران

3 کارشناسی، دانشکده مهندسی برق، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، تهران، ایران

چکیده

طراحان سیستم روی تراشه‌های جدید سعی در گنجاندن ملزومات بیشتری در طراحی بلوک‌های ساختاری دارند تا مدارهای مجتمع دیجیتالی قابل اطمینان با چگالی بالا، سرعت کلیدزنی بالا و توان مصرفی پائین ارائه دهند. در این مقاله، افزاره جدیدی به‌نام دیود اثر میدانی با تحرک الکترونی بالا (HEMFED) بر پایه AlGaN/GaN با موفقیت طراحی شده است. به منظور جلوگیری از نشت لایه بافر GaN و کاهش تأثیر مخرب تله‌های این لایه بر روی رفتار انتقالی گاز الکترون دو بعدی (2-DEG)، یک لایه جداساز AlN در ساختار ناهمگون به کار رفته است. ساختار پیشنهادی، نسبت جریان روشن به خاموش (ION/IOFF) را تا 107×88/4 برابر نسبت به همتای ترانزیستور با تحرک الکترونی بالا (HEMT) بر پایه AlGaN/GaN، 108×20/8 برابر نسبت به همتای ترانزیستور اثر میدانی فلز-اکسید-نیمه‌هادی (MOSFET)، و 104×05/9 برابر نسبت به همتای دیود اثر میدانی (FED) بر پایه Si در ولتاژ تغذیه V 8/1 بهبود می‌دهد. این برتری ناشی از برقراری یک میدان الکتریکی قوی به میزان kV/cm 800 در ناحیه 2-DEG ساختار ناهمگون پیشنهادی وتسریع حرکت حامل‌های الکترون صفحه‌ای در کانال می‌باشد. از این‌رو، این افزاره در کاربردهای دیجیتالی سرعت بالا و توان مصرفی پایین قابلیت استفاده دارد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Design and Simulation of AlGaN/GaN High Electron Mobility Field-Effect Diode

نویسندگان [English]

  • Tara Ghafouri 1
  • Negin Manavizadeh 2
  • Matineh Hosseini 3

1 Ph. D. Student, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Tehran, Iran

2 Associate Professor, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Tehran, Iran

3 B. Sc., Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Tehran, Iran

چکیده [English]

Modern system-on-chip (SoC) designers are trying to include more considerations in designing building blocks to present reliable integrated digital circuits as well as high-density, high-speed, and low-power ones. In this paper, an innovative device so-called High Electron Mobility Field-Effect Diode (HEMFED) is successfully designed based on AlGaN/GaN. To prohibit leakage of GaN buffer layer and weaken the impact of the buffer traps on electrical transport properties of two-dimensional electron gas (2-DEG), AlN spacer layer is embedded in the heterostructure. The proposed structure enhances ION/IOFF ratio up to 4.88×107 times compared to the AlGaN/GaN High Electron Mobility Field-Effect Transistor (HEMT) counterpart, 8.20×108 times compared to the Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) counterpart, and 9.05×104 times compared to the Si Field-Effect Diode (FED) counterpart, at a supply voltage of VDD=1.8 V. This superiority of the proposed device is referred to the formation of a strong electric field of 800 kV/cm in 2-DEEG and the precipitation of electron sheet carriers in the channel. Accordingly, the proposed device can be utilized in high-speed and low-power digital applications.

کلیدواژه‌ها [English]

  • High Electron Mobility Field-Effect Diode (HEMFED)
  • ION/IOFF ratio
  • Heterojunction
  • Buffer layer
  • leakage
  1. Mukhopadhyay, S., Kalita, S., "Review on the designs and characteristics of high-electron mobility transistors", International Journal of Microwave Engineering and Technology, Vol. 4, No. 1, (2018), 20-41. https://doi.org/10.37628/ijmet.v4i1.765
  2. Zeng, F., An, J. X., Zhou, G., Li, W., Wang, H., Duan, T., Jiang, L., Yu, H., "A comprehensive review of recent progress on GaN high electron mobility transistors: Devices, fabrication and reliability", Electronics, Vol. 7, No. 12, (2018), 377. https://doi.org/10.3390/electronics7120377
  3. Chen, W., Wong, K. Y., Huang, W., Chen, K. J., "High-performance AlGaN/GaN lateral field-effect rectifiers compatible with high electron mobility transistors", Applied Physics Leters, Vol. 92, (2008), 253501. https://doi.org/10.1063/1.2951615
  4. Lee, G. Y., Liu, H. H., Chyi, J. I., "High-performance AlGaN/GaN schottky diodes with an AlGaN/AlN buffer layer", IEEE Electron Device Letters, Vol. 32, No. 11, (2011), 1519-1521. https://doi.org/10.1109/LED.2011.2164610
  5. Yoshida, S., Li, J., Ikeda, N., Hataya, K., "AlGaN/GaN field effect Schottky barrier diode (FESBD)", Physica Status Solidi (c), Vol. 2, No. 7, (2005), 2602-2606. https://doi.org/10.1002/pssc.200461300
  6. Narang, K., Bag, R. K., Singh, V. K., Pandey, A., Saini, S. K., Khan, R., Arora, A., Padmavati, M. V. G., Tyagi, R., Singh, R., "Improvement in surface morphology and 2DEG properties of AlGaN/GaN HEMT", Journal of Alloys and Compounds, Vol. 815, (2020), 152283. https://doi.org/10.1016/j.jallcom.2019.152283
  7. Ghafouri, T., Salehi, A., Mahmoodnia, H., "Investigating a novel normally-ON AlGaN/GaN capped PHEMT and the effects of cap layers thickness on its gate leakage current", Proceedings of 26th Iranian Conference on Electrical Engineering (ICEE), Mashhad, Iran, 8-10 May 2018, (2018), 305-310. https://doi.org/10.1109/ICEE.2018.8472634
  8. Lee, I., Kim, J. N., Kang, W. T., Shin, Y. S., Lee, B. H., Yu, W. J., "Schottky barrier variable graphene/multilayer-MoS2 heterojunction transistor used to overcome short channel effects", ACS Applied Matererials and Interfaces, 12, No. 2, (2020), 2854-2861. https://doi.org/10.1021/acsami.9b18577
  9. Banerjee, P., Sarkar, S. K., "3-D analytical modeling of high-k gate stack dual-material tri-gate strained silicon-on-nothing MOSFET with dual-material bottom gate for suppressing short channel effects", Journal of Computational Electronics, Vol. 16, (2017), 631-639. https://doi.org/10.1007/s10825-017-1002-y
  10. Dash, D. K., Saha, P., Sarkar, S. K., "3-D analytical modeling of triple metal tri-gate graded channel high-k SON TFET for improved performance", Silicon, Vol. 12, (2020), 2041-2052. https://doi.org/10.1007/s12633-019-00268-5
  11. Vimala, P., Samuel, T. S. A., "Investigation of cylindrical channel gate all around InGaAs/InP heterojunction heterodielectric tunnel FETs", Silicon, (2020). https://doi.org/10.1007/s12633-020-00691-z
  12. Masoudi, A., Ahangari, Z., Fathipour, M., "Performance optimization of a nanoscale GaSb p-channel electron-hole bilayer tunnel field effect transistor using metal gate workfunction engineering", Materials Research Express, Vol. 6, No. 9, (2019), 096311. https://doi.org/10.1088/2053-1591/ab30b0
  13. Abdi, D. B., Kumar, M. J., "In-built n+ pocket p-n-p-n tunnel field-effect transistor", IEEE Electron Device Letters, Vol. 35, No. 12, (2014), 1170-1172. https://doi.org/10.1109/LED.2014.2362926
  14. M., Nakajima, M., Jin. Q., Kimoto, T., "Experimental study on short-channel effects in double-gate silicon carbide JFETs", IEEE Transactions on Electron Devices, Vol. 67, No. 10, (2020), 4538-4540. https://doi.org/10.1109/TED.2020.3017143
  15. Singh, A., Chaudhury, S., Pandey, C. K., Sharma, S. M., Sarkar, C. K., "Design and analysis of high k silicon nanotube tunnel FET device", IET Circuits, Devices and Systems, Vol. 13, No. 8, (2019), 1305-1310. https://doi.org/10.1049/iet-cds.2019.0230
  16. Moalaghi, M., Koohisaadi, A., Talebnia, P., Manavizadeh, N., Lemraski, M. S., "Improving electronic parameters of silicon nanowires by arsenic and phosphor dopants", Jouurnal of Advanced Materials and Technologies (JAMT), Vol. 4, No. 4, (2015), 11-17. https://doi.org/10.30501/JAMT.2636.70311
  17. Gaulke, M., Janissek, A., Peyyety, N. A., Alamgir, I., Riaz, A., Dehm, S., Li, H., Lemmer, U., Flavel, B. S., Kappes, M. M., Hennrich, F., Wei, L., Chen, Y., Pyatkov, F., Krupke, R., "Low-temperature electroluminescence excitation mapping of excitons and trions in short-channel monochiral carbon nanotube devices", ACS Nano, Vol. 14, No. 3, (2020), 2709-2717. https://doi.org/10.1021/acsnano.9b07207
  18. Wong, K. L., Chuan, M. W., Hamzah, A., Rusli, S., Alias, N. E., Sultan, S. M., Lim, C. S., Tan, M. L. P., "Carrier transport of rough-edged doped GNRFETs with metal contacts at various channel widths", Superlattices and Microstructures, Vol. 143, (2020), 106548. https://doi.org/10.1016/j.spmi.2020.106548
  19. Dabir, F., Sarraf-Mamoory, R., Riahi-Noori, N., Loeblein, M., Teo, E. H. T., "Synthesis and electrical properties evaluation of three-dimensional graphene", Jouurnal of Advanced Materials and Technologies (JAMT), Vol. 4, No. 3, (2015), 17-23. https://doi.org/10.30501/JAMT.2637.70303
  20. He, Y., Huang, Z., Zhang, M., Wu, M., Mi, M., Wang, C., Yang, L., Zhang. C., Guo, L., Ma, X., Hao, Y., "Temperature‐dependent characteristics of AlGaN/GaN nanowire channel high electron mobility transistors", Applications and Materials Science, Vol. 216, No. 16, (2019), 1900396. https://doi.org/10.1002/pssa.201900396
  21. Purwaningsih, S. Y., Zainuri, M., Triwikantoro, T., Pratapa, S., Darminto, D., "Structural, optical and defect state analyses of ZnO nanoparticle films", International Journal of Engineering, Vol. 33, No. 5, (2020), 852-860. https://doi.org/10.5829/ije.2020.33.05b.17
  22. Raissi, F., "A brief analysis of the field effect diode and breakdown transistor", IEEE Transactions on Electron Devices, Vol. 43, No. 2, (1996), 362-365. https://doi.org/10.1109/16.481742
  23. Manavizadeh, N., Raissi, F., Soleimani, E. A., Pourfath, M., Selberherr, S., "Performance assessment of nanoscale field-effect diodes", IEEE Transactions on Electron Devices, Vol. 58, No. 8, (2011), 2378-2384. https://doi.org/10.1109/TED.2011.2152844
  24. Manavizadeh, N., Raissi, F., Soleimani, E. A., Pourfath, M., "Geometrical study of nanoscale field effect diodes", Semicondoctor Science and Technology, Vol. 27, No. 4, (2012), 045011. https://doi.org/10.1088/0268-1242/27/4/045011
  25. Touchaee, B. J., Manavizadeh, N., "An inverter gate design based on nanoscale S-FED as a function of reservoir thickness", IEEE Transactions on Electron Devices, Vol. 62, No. 10, (2015), 3147-3152. https://doi.org/10.1109/TED.2015.2463099
  26. Salman, A. A., Beebe, S. G., Emam, M., Pelella, M. M., Ioannou, D. E., "Field Effect Diode (FED): A novel device for ESD protection in deep sub-micron SOI technologies", Proceedings of International Electron Devices Meeting, San Francisco, CA, USA, 11-13 December 2006, (2006), 1-4. https://doi.org/10.1109/IEDM.2006.346971
  27. Touchaee, B. J., Manavizadeh, N., "Design and simulation of low-power logic gates based on nanoscale side-contacted FED", IEEE Transactions on Electron Devices, Vol. 64, No. 1, (2017), 306-311. https://doi.org/10.1109/TED.2016.2626342
  28. Ghafouri, T., Manavizadeh, N., "Design and simulation of high-performance 2:1 multiplexer based on side-contacted FED", Ain Shams Engineering Journal, 12, No. 1, (2021), 709-716. https://doi.org/10.1016/j.asej.2020.05.005
  29. Badwan, A. Z., Chbili, Z., Li, Q., Ioannou, D. E., "SOI FED-SRAM cell: Structure and operation", IEEE Transactions on Electron Devices, Vol. 62, No. 9, (2015), 2865-2870. https://doi.org/10.1109/TED.2015.2450693
  30. Ghafouri, T., Manavizadeh, N., "Noise-immune 6T SRAM bit-cells based on side-contacted FED", IEEE Transactions on Electron Devices, Vol. 67, No. 12, (2020), 5511-5519. https://doi.org/10.1109/TED.2020.3028342
  31. Ghafouri, T., Manavizadeh, N., "Performance comparison of 6T SRAM bit-cells based on side-contacted FED and CMOS", Alexandria Engineering Journal, Vol. 59, No. 5, (2020), 3715-3729. https://doi.org/10.1016/j.aej.2020.06.026
  32. Badwan, A. Z., Chbili, Z., Yang, Y., Salman, A. A., Li, Q., Ioannou, D. E., "SOI Field-Effect Diode DRAM cell: Design and operation", IEEE Electron Device Letters, Vol. 34, No. 8, (2013), 1002-1004. https://doi.org/10.1109/LED.2013.2265552
  33. Alim, M. A., Jahan, I., Nipu, N. J., Naher, S., Rezazadeh, A. A., "Local mismatch and noise investigation for pre and post multilayer pHEMTs", Current Applied Physics, Vol. 20, No. 12, (2020), 1314-1320. https://doi.org/10.1016/j.cap.2020.09.006
  34. Table PIDS2a High-Performance (HP) Logic Technology Recruitment, Process Integration, Devices, and Structures (PIDS), (2018). http://www.itrs.net/
  35. ATLAS user’s manual device simulation software, Santa Clara, CA, USA, Silvaco, (2018). https://dynamic.silvaco.com
  36. Datta, S., Quantum transport: Atom to transistor, First edition, Cambridge University Press, (2005). https://cds.cern.ch
  37. Mita, J., Toda, F., Marui, T., Method for fabricating AIGaN/GaN-HEMT using selective regrowth, U.S. patent, US 20080176366 A1, (2008). https://patents.google.com/patent/US20080176366A1 (Accessed: 24 July 2008).
  38. Saha, J. K., Chakma, N., Hasan, M., "Impact of scaling channel length on the performances of nanoscale FETs", Proceedings of 9th International Conference on Electrical and Computer Engineering, Dhaka, Bangladesh, 20-22 December 2016, (2016), 123-126. https://doi.org/10.1109/ICECE.2016.7853871
  39. Kim, T. K., Kim, D. H., Yoon, Y. G., Moon, J. M., Hwang, B. W., Moon, D. I., Lee, G. S., Lee, D. W., Yoo, D. E., Hwang, H. C., Kim, J. S., Choi, Y. K., Cho, B. J., Lee, S. H., "First demonstration of junctionless accumulation-mode bulk FinFETs with robust junction isolation", IEEE Electron Device Letters, Vol. 34, No. 12, (2013), 1479-1481. https://doi.org/10.1109/LED.2013.2283291
  40. Kordrostami, Z., Sheikhi, M. H., Zarifkar, A., "Influence of channel and underlap engineering on the high-frequency and switching performance of CNTFETs", IEEE Transactions on Nanotechnology, Vol. 11, No. 3, (2012), 526-533. https://doi.org/10.1109/TNANO.2011.2181998