نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده علوم و فنون نوین، دانشگاه تهران، تهران، تهران، ایران

2 دانشیار، دانشکده علوم و فنون نوین، دانشگاه تهران، تهران، تهران، ایران

3 دانشجوی کارشناسی ارشد، دانشکده فنی و مهندسی، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، تهران، ایران

چکیده

هدف از این پژوهش، ساخت و بررسی خواص داربست نانولیفی از پلی‌کاپرولاکتون- فیبروئین ابریشم سولفونه برای کاربردهای مهندسی بافت استخوان است. بدین‌منظور، فیبروئین ابریشم، بعد از تخلیص از پیله ابریشم، با استفاده از پیریدین و کلروسولفونیک‌ اسید، سولفونه شد. سپس، مقدار مشخصی از فیبروئین ابریشم سولفونه، با پلی‌کاپرولاکتون مخلوط و با ولتاژ ۱۱ کیلوولت و سرعت ۴/۰ میلی‌لیتر بر ساعت الکتروریسی شد. آزمون­ های مختلفی مانند بررسی ترکیب شیمیایی، ساختار، زیست‌فعالی، سمّیت و چسبندگی سلولی انجام شد. با بررسی طیف‌سنجی تبدیل فوریه فروسرخ، مشخص شد که گروه‌های سولفاتی و سولفوناتی، با موفقیت، در ساختار فیبروئین ابریشم ایجاد شده‌اند. تصاویر میکروسکوپ الکترونی روبشی، حاکی از تشکیل ساختاری لیفی‌شکل با الیاف پیوسته و بدون گره در ترکیبات الکتروریسی شده بود. افزودن فیبروئین ابریشم سولفونه‌شده به پلی‌کاپرولاکتون، سبب کاهش قطر الیاف از ۲۴۴ نانومتر به ۱۳۸ نانومتر شد. همچنین، نتایج نشان داد که میزان جذب آب در داربست‌ پلی‌کاپرولاکتون، براثر افزودن فیبروئین ابریشم سولفونه، به ترتیب از ۴/۱۲ درصد به ۱۶۷ درصد افزایش یافته ‌است. نتایج به‌دست‌آمده از آزمون‌های زیست‌فعالی و کشت سلولی حاکی از آن بود که فیبروئین ابریشم سولفونه، سبب رسوب لایه کلسیم فسفات آپاتیتی و همچنین، بهبود تکثیر و چسبندگی سلولی در الیاف پلی‌کاپرولاکتون شده است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Preparation and Characterization of Composite Bone Scaffold Based on Polycaprolactone and Sulfonated Silk Fibroin Nanofibers

نویسندگان [English]

  • Negin Vahedi 1
  • Jhamak Nourmohammadi 2
  • Niloofar Pahlevani 3
  • Sahar Nakhostin Hosseini 1

1 M. Sc. Student, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Tehran, Iran

2 Associate Professor, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Tehran, Iran

3 M. Sc. Student, Faculty of Technology and Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Tehran, Iran

چکیده [English]

The objective of this study was to fabricate and characterize the characteristics of polycaprolactone-sulfonated silk fibroin nanofibrous scaffold for bone tissue engineering applications. Thus, after extraction of silk fibroin (SF) from from Bombyx mori cocoons, silk fibroin (SF) was sulfonated using chlorosulfonic acid and pyridine. Afterwards, a certain amount of sulfonated SF was mixed with polycaprolactone (PCL) solution, and then electrospinning was done using 11 kV high voltage and feeding rate 0.4 mL/h. Various characterization tests were applied to analyze such items such as the structure, chemical composition, bioactivity, cellular attachment, and viability. Fourier transform infrared spectroscopy analyses proved the successful incorporation of sulfate and sulfonate groups in SF structure. The scanning electron microscope shows the formation of continuous and beadless fibers. The average fiber diameter in polycaprolactone nanofibers reduced from 244 nm to 138 nm with the addition of sulfonated SF. Moreover, the water uptake of PCL nanofibers improved from 12.4 % to 167 % after the addition of sulfonated silk fibroin to polycaprolactone. The results of bioactivity and cell culture experiments indicated that sulfonated SF promotes apatitic calcium phosphate deposition and also enhances cellular attachment and viability of PCL nanofibers.

کلیدواژه‌ها [English]

  • polycaprolactone
  • Sulfonated silk fibroin
  • Calcium phosphate deposition
  • Bone scaffold
  1. Iron, R., Karbasi, S., Mehdikhani, M., Semnani, D., "Preparation of nanocomposite fibrous scaffolds of Poly-3-Hydroxybutyrate/bioactive glass by electrospinning method for bone tissue engineering",. Journal of Advanced Materials and Technologies (JAMT), Vol. 3, (2015), 11-19. https://doi.org/30501/JAMT.2635.70278
  2. Orciani, M., Fini, M., Di Primio, R., Mattioli-Belmonte, M., "Biofabrication and bone tissue regeneration: cell source, approaches, and challenges", Frontiers in Bioengineering and Biotechnology, Vol. 5, (2017), 17. https://doi.org/10.3389/fbioe.2017.00017
  3. Gentili, R., Cancedda, R., "Cartilage and bone extracellular matrix", Current Pharmaceutical Design, Vol. 5, (2009), 1334-1348. https://doi.org/10.2174/138161209787846739
  4. Haung, Z. M., Zhang, Y. Z., "A review on polymer nanofibers by electrospinning and their applications in nanocomposites", Composites Science and Technology, Vol. 63, No. 15, (2003), 2223-2253, https://doi.org/10.1016/S0266-3538(03)00178-7
  5. Haider, A., Haider, S., Kang, I. K., "A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology", Arabian Journal of Chemistry, Vol. 11, No. 8, (2018), 1165-1188. https://doi.org/10.1016/j.arabjc.2015.11.015
  6. Hadisi, Z., Nourmohammadi, J., Mohammadi, J., "Composite for porous starch-silk fibroin nanofiber-calcium phosphate for bone regerneration", Ceramics International, Vol. 41, No. 9, (2015), 10745-10754. https://doi.org/10.1016/j.ceramint.2015.05.010
  7. Koons, G. L., Diba, M., Mikos, A. G,. "Materials design for bone-tissue engineering", Nature Reviews Materials, 5, (2020), 584-603. https://doi.org/10.1038/s41578-020-0204-2
  8. Jeon, H. J., Lee, M., Yun, S., "Fabrication and characterization of 3D-printed biocomposite scaffolds based on PCL and silanated silica particles for bone tissue regeneration", Chemical Engineering Journal, Vol. 360, (2019), 519-530. https://doi.org/10.1016/j.cej.2018.11.176
  9. Gao, X., Song, J., Ji, P., Zhang, X., Li, X., Xu, X., Wang, M., Zhang, S., Deng, Y., Deng, F., Wei, S. "Polydopamine-templated hydroxyapatite reinforced polycaprolactone composite nanofibers with enhanced cytocompatibility and osteogenesis for bone tissue engineering", ACS Applied Materials & Interfaces, Vol. 8, (2016), 3499-3515. https://doi.org/10.1021/acsami.5b12413
  10. Tohidloo, M., Shafiei, S., Shiralipour, F., "Preparation and evaluation of polycaprolactone amine functionalized carbon nanotube electrospun nanocomposite scaffold containing mesenchymal stem cells for use in hard tissue engineering", Journal of Advanced Materials and Technologies (JAMT), 8, (2020), 19-30. https://doi.org/10.30501/JAMT.2020.93226
  11. Olivveira, A. L., Sun, L., Kim, H. J., Hu, X., Rice, W., Kluge, J., Kaplan, D. L., "Aligned silk-based 3-D architectures for contact guidance in tissue engineering", Acta Biomaterialia, Vol. 8, No. 4, (2012), 1530-1542. https://doi.org/10.1016/j.actbio.2011.12.015
  12. Nourmohammadi, J., Roshanfar, F., Farokhi, M., Nazarpak, M. H., "Silk fibroin/kapppa-carrageenan composite scaffolds with enhanced biomimetic mineralization for bone regeneration applications", Material Science and Engineering: C, Vol. 76, (2017), 951-958. https://doi.org/10.1016/j.msec.2017.03.166
  13. Venkatasan, J., Pallella, R., Bhatnagar, I., Kim, S. K., "Citosan-amylopectin/hydroxyapatite and chitosan-chondrotin suphat/hydroxyapatite composite sacaffolds for bone tissue", International Journal of Biological Macromolecules, Vol. 51, No. 5, (2012), 1033-1042. https://doi.org/10.1016/j.ijbiomac.2012.08.020
  14. Gumusderelioglu, M., Aday, S., "Heparin-functionalized chitosan scaffolds for bone tissue engineering", Carbohydrate Reseaerch, Vol. 346, No. 5, (2011), 606-613. https://doi.org/10.1016/j.carres.2010.12.007
  15. Singh, R., Eitler, D., Morelle, R., Friedrich, R. P., Dietel, B., Alexiou, C., Cicha, I., "Optimization of cell seeding on the electrospun PCL-silk fibroin scaffolds", European Polymer Journal, Vol. 134, 109838. https://doi.org/101016/j.eurpolymj.2020.109838
  16. Liu, X., Xu, W., Zhang, C., Liu, H., Fang, J., "Homogeneous sulfation of silk fibroin in an ionic liquid", Materials Letters, Vol. 143, (2015), 302-304. https://doi.org/10.1016/j.matlet.2014.12.140
  17. Meechaisue, C., Wutticharoenmongkol, P., "Preparation of electrospun silk fibroin fiber mats as bone scaffolds: A preliminary study", Biomedical Materials, Vol. 2, No. 3, (2007), 181-188.
  18. Moaddab, M., Nourmohammadi, J., Rezayan, A. H., "Bioactive composite scaffolds of carboxymethyl chitosan-silk fibroin containing chitosan nanoparticles for sustained release of ascorbic acid", European Polymer Journal, Vol. 103, (2018), 40-50. https://doi.org/10.1016/j.eurpolymj.2018.03.032
  19. Nourmohammadi, J., Ghaee, A., Hosseini Livali, S. H., "Preparation and characterization of bioactive composite scaffolds from polycaprolacton nanofibers-chitosan-oxidized starch for bone regeneration", Carbohydrate Polymers, Vol. 138, (2016), 172-179. https://doi.org/10.1016/j.carbpol.2015.11.055
  20. Taddei, P., Arosio, C., Monti, P., Tsukada, M., Arai, T., Freddi, G., "Chemical and physical properties of sulfated silk fabrics", Biomacromolecules, Vol. 8, No. 4, (2007), 1200-1208. https://doi.org/10.1021/bm061017y
  21. Tamada, Y., "Sulfation of silk fibroin by sulfuric acid and anticoagulant activity", Journal of Applied Polymer Science, Vol. 87, No. 14, (2003), 2377-2383. https://doi.org/10.1002/app.12022
  22. Sultana, N., Khan, T. H., "Water absorbtion and diffusion characteristics of nanohydroxyapatite (nHA) and poly (hydroxybutyrate-co-hydroxyvalerte-) based composite tissue engineering scaffolds ans nanoporous thin films", Journal of Nanomaterials, (2013). https://doi.org/10.1155/2013/479109
  23. Balu, R., Kumar, T. S., Ramalingam, M., Ramakrishna, S., "Electrospun polycaprolactone/poly (1, 4-butylene adipate-co-polycaprolactam) blends: Potential biodegradable scaffold for bone tissue regeneration", Journal of Biomaterials and Tissue Engineering, 1, (2011), 30-39. https://doi.org/10.1166/jbt.2011.1004
  24. Turkkan, S., Pazarceviren, A. E., Keshin, D., "Nanosized CaP-silk fibroin-PCL-PEG-PCL/PCL based bilayer membranes for guided bone regeneration", Materials Science and Engineering: C, Vol. 80, (2017), 484-493. https://doi.org/10.1016/j.msec.2017.06.016
  25. Shahriarpanah, S., Nourmohammadi, J., Amooabediny, G., "Fabrication and characterization of carboxylated starch-chitosan bioactive scaffold for bone regeneration”, International Journal of Biological Macromolecules, Vol. 93, (2016), 1069-1078. https://doi.org/10.1016/j.ijbiomac.2016.09.045
  26. Tang, L., Thevenot, P., Hu, W., "Surface chemistry influences implant biocompability", Current Topics in Medicinal Chemistry, Vol. 8, No. 4, (2008), 270-280. https://doi.org/10.2174/156802608783790901
  27. Xion, S., Zhang, X., Wu, Y., Wang, Q, Sun, H., Ouyang, H., "A gelatin-sulfonated silk composite scaffold based on 3D printing technology enhances skin regeneration by simulating epidermal growth and dermal neovascularization", Scientific Reports, Vol. 7, No. 1, (2017), 1-12. https://doi.org/10.1038/s41598-017-04149-y
  28. Liu, X., Zhou, G., Fan, Y., "Electrospun sulfated silk fibroin nanofibrous scaffolds for vascular tissue engineering", Biomaterials, Vol. 32, No. 15, (2011), 3784-3793. https://doi.org/10.1016/j.biomaterials.2011.02.002