نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 استادیار، گروه مهندسی مواد، شیمی و پلیمر، دانشگاه بین المللی امام خمینی (ره)-مرکز آموزش عالی فنی و مهندسی بوئین‌زهرا، بوئین‌زهرا، قزوین، ایران

2 استادیار، دانشکده مهندسی مواد و شیمی، مجتمع آموزش عالی فنی و مهندسی اسفراین، اسفراین، خراسان شمالی، ایران

چکیده

حضور ماکروتخلخل‌ها در داربست‌ها، علاوه بر افزایش سرعت جذب، باعث فراهم‌ آمدن ساختاری برای رشد سلول‌های استخوانی و ایجاد استخوان جدید با ساختار کامل و یکنواخت می‌شود. در این پژوهش، پودر سیمان کلسیم فسفات، با مخلوطی از تتراکلسیم ‌فسفات و دی‌کلسیم‌ فسفات دوآبه، تهیه شد. برای به‌دست‌ آوردن سوسپانسیون پایدار، پودر سیمان، با نسبت پودر به مایع 5/0 گرم بر میلی‌لیتر، با آب یون‌زدایی ‌شده، مخلوط شد و 3 درصد ‌وزنی دولاپیکس جامد و 4 درصد ‌وزنی پلی‌وینیل ‌الکل (PVA) جامد به سوسپانسیون اضافه شد. داربست‌ها، به روش ریخته‌گری انجمادی تهیه شدند. متوسط اندازه ذرات پودر سیمان، 45/5 میکرومتر تخمین زده شد. بررسی میکروسکوپ الکترونی روبشی (SEM) نشان داد که ساختار، حاوی تخلخل‌هایی در محدوده 100 تا 300 میکرومتر است و بعد از قرار‌گیری داربست‌ها در محلول شبیه به مایعات بدن، آپاتیت نانوساختار، روی دیواره تخلخل‌ها تشکیل شد. استحکام فشاری نمونه‌ها بین 2/1 تا 2/2 مگاپاسکال اندازه‌گیری شد. تکثیر سلولی نشان داد با گذشت زمان، تعداد سلول‌های شمارش ‌شده روی سطح نمونه‌ها، تقریباً سه برابر شده است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Fabrication of Nanostructured Apatite Scaffolds by Freeze-Casting Method for Bone Tissue Engineering

نویسندگان [English]

  • Shokoufeh Borhan 1
  • Javad Esmaeilzadeh 2

1 Assisstant Professor, Department of Materials, Chemical and Polymer Engineering, Imam Khomeini International University-Buin Zahra Higher Education Center of Engineering and Technology, Buin Zahra, Qazvin, Iran

2 Assisstant Professor, Department of Material and Chemical Engineering, Esfarayen University of Technology, Esfarayen, North Khorasan, Iran

چکیده [English]

The presence of macropores in the scaffolds, in addition to increasing the rate of adsorption, provides a structure for the growth of osteoblasts and promote the formation of new bone with a complete and uniform structure. In this study, calcium phosphate powder was prepared by mixing tetra calcium phosphate and dicalcium phosphate dihydrated. To achieve stable suspension cement powder was mixed with deionized water at powder to liquid ratio of 0.5 g/mL and 3 wt % of dispersant factor, dolapix, and 4 wt % of polyvinyl alcohol were added to suspension. Scaffolds were prepared by freeze-casting method. The average particle size of cement powder was estimated to be 5.45 μm. SEM micrographs indicate that created pores in the structure are in the range of 100-300 μm. Nanostructure apatite is formed on the wall of pores after soaking in SBF. Compressive strength of samples was measured between 1.2 to 2.2 MPa. Cell numbers on the surface of the samples are tripled over time.

کلیدواژه‌ها [English]

  • Calcium Phosphate
  • Freeze Casting
  • Macro Porous
  • Nanostructure
  1. Jarcho, M., "Calcium phosphates ceramics as hard tissue prosthetics", Classic Papers in Orthopaedics, Vol. 157, (1981), 259-278. https://doi.org/10.1097/00003086-198106000-00037
  2. De Groot, K., Ducheyne, P., "In vivo surface activity of a hydroxyapatite alveolar bone substitute", Journal of Biomedical Materials Research, Vol. 15, No. 3, (1981), 441-445. https://doi.org/10.1002/jbm.820150315
  3. Teixeira, S., Queiroz, A. C., Monteiro, F. J., Ferraz, M. P., Vilar, R., Eugenio, S., "Osteoblast proliferation and morphology analysis on laser modified hydroxyapatite surfaces: Preliminary results", Key Engineering Materials, Vol. 309-311, (2006), 105-108. https://doi.org/10.4028/www.scientific.net/KEM.309-311.105
  4. Santos, E. A., Farina, M., Soares, G. A., "Specific proliferation rates of human osteoblasts on calcium phosphate surfaces with variable concentrations of α-TCP", Materials Science and Engineering C, Vol. 27, No. 1, (2007), 61-66. https://doi.org/10.1016/j.msec.2006.02.003
  5. Webster, T. J., Siegel, R. W., Bizios, R., "Enhanced functions of osteoblasts on nanophase ceramics", Biomaterials, Vol. 21, No. 17, (2000), 1803-1810. https://doi.org/10.1016/S0142-9612(00)00075-2
  6. Salyer, K. E., Hall, C. D., "Porous hydroxyapatite as an onlay bone graft substitute for maxillofacial surgery", Plastic and Reconstructive Surgery, Vol. 84, No. 2, (1989), 236-244. https://doi.org/10.1097/00006534-198908000-00008
  7. Merritt, K., Shafer, J. W., Brown, S. A., "Implant site infection rate with porous and dense materials", Journal of Biomedical Material Research, Vol. 13, No. 1, (1979), 101-108. https://doi.org/10.1002/jbm.820130111
  8. De Groot, K., "Effect of porosity and physicochemical properties on the stability, resorption and strength of calcium phosphate ceramics", Annals of the New Acadamy of Sciences, Vol. 523, No. 1, (1988), 227-233. https://doi.org/10.1111/j.1749-6632.1988.tb38515.x
  9. Xu, H., Quinn, J. B., Takagi, S., Chow, L. C., Eichmiller, F. C., "Strong and macroporous calcium phosphate cement: Effects of porosity and fiber reinforcement on mechanical properties", Journal of Biomedical Materials Research, Vol. 57, No. 3, (2001), 457-466. https://doi.org/10.1002/1097-4636(20011205)57:3<457::AID-JBM1189>3.0.CO;2-X
  10. Takagi, S., Chow, L. C., "Formation of macropores in calcium phosphate cement implant", Journal of material Science Material Medicine, Vol. 12, No. 2, (2001), 135-139. https://doi.org/10.1023/A:1008917910468
  11. Landi, E., Valentini, F., Tampieri, A., "Porous hydroxyapatite/gelatine scaffolds with ice-designed channel-like porosity for biomedical applications", Acta Biomaterialia, Vol. 4, No. 6, (2008), 1620-1626. https://doi.org/10.1016/j.actbio.2008.05.023
  12. Munch, E., Franco, J., Deville, S., Hunger, P., Saiz, E., Tomsia, A. P., "Porous ceramic scaffolds with complex architectures", The Journal of The Minerals, Metals & Materials Society, Vol. 60, No. 6, (2008), 54-58. https://doi.org/10.1007/s11837-008-0072-5
  13. Waschkies, T., Oberacker, R., Hoffmann, M. J., "Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities", Acta Materialia, Vol. 59, No. 13, (2011), 5135-5145. https://doi.org/10.1016/j.actamat.2011.04.046
  14. Araki, K., Halloran, J. W., “Room-temperature freeze casting for ceramics with nonaqueous sublimable vehicles in the naphthalene–camphor eutectic system", Journal of American Ceramic Society, Vol. 87, No. 11, (2004), 2014-2019. https://doi.org/10.1111/j.1151-2916.2004.tb06353.x
  15. Hesaraki, S., Zamanian, A., Moztarzadeh, F., "Effect of adding sodium hexametaphosphate liquefier on basic properties of calcium phosphate cements", Journal of Biomedical Materials Research Part A, Vol. 88, No. 2, (2009), 314-321. https://doi.org/10.1002/jbm.a.31836
  16. Deville, S., "Freeze-casting of porous ceramics: A review of current achievements and issues", Advanced Engineering Materials, Vol. 10, No. 3, (2008), 155-169. https://doi.org/10.1002/adem.200700270
  17. Farhangdoust, S., Zamanian, A., Yasaei, M., Khorami, M., "The effect of processing parameters and solid concentration on the mechanical and microstructural properties of freeze-casted macroporous hydroxyapatite scaffolds", Materials Science and Engineering C, Vol. 33, No. 1, (2013), 453-460. https://doi.org/10.1016/j.msec.2012.09.013
  18. Liu, R., Xu, T., Wang, C., "A review of fabrication strategies and applications of porous ceramics prepared by freeze-casting method", Ceramics International, Vol. 42, No. 2, (2016), 2907-2925. https://doi.org/10.1016/j.ceramint.2015.10.148
  19. Ginebra, M. P., Espanol, M., Montufar, E. B., Perez, R. A., Mestres, G. "New processing approaches in calcium phosphate cements and their applications in regenerative medicine", Acta Biomaterial, Vol. 6, No. 8, (2010), 2863-2873. https://doi.org/10.1016/j.actbio.2010.01.036
  20. Sariibrahimoglu, K., Wolke, J. G., Leeuwenburgh, S. C., Yubao, L., Jansen, J. A., "Injectable biphasic calcium phosphate cements as a potential bone substitute", Journal of Biomedical Material Research B Applied Biomaterial, Vol. 102, No. 3, (2014), 415-422. https://doi.org/10.1002/jbm.b.33018
  21. Grover, L. M., Wright, A. J., Gbureck, U., "The effect of amorphous pyrophosphate on calcium phosphate cement resorption and bone generation", Biomaterials, Vol. 34, No. 28, (2013), 6631-6637. https://doi.org/10.1016/j.biomaterials.2013.05.001
  22. Zhang, J., Liu, W., Schnitzler, V., Tancret, F., Bouler, J. M., "Calcium phosphate cements for bone substitution: Chemistry, handling and mechanical properties", Acta Biomaterial, Vol. 10, No. 3, (2014), 1035-1049. https://doi.org/10.1016/j.actbio.2013.11.001
  23. Deville, S., Saiz, E., Tomsia, A. P., "Freeze casting of hydroxyapatite scaffolds for bone tissue engineering", Biomaterials, Vol. 27, No. 32, (2006), 5480-5489. https://doi.org/10.1016/j.biomaterials.2006.06.028
  24. Kokubo, T., Kushitani, H., Sakka, S., Kitsugi, T., Yamamuro, T., "Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W", Journal of Biomedical Materials Research, Vol. 24, No. 6, (1990), 721-734. https://doi.org/10.1002/jbm.820240607
  25. Tondaturo, C., Gentile, P., Saracino, S., Chiono, , Nandagiri, V. K., Muzio, G., Canuto, R. A., Ciardelli, G., "Comparative analysis of gelatin scaffolds crosslinked by genipin and silane coupling agent", International Journal of Biological Macromolecules, Vol. 49, No. 4, (2011), 700-706. https://doi.org/10.1016/j.ijbiomac.2011.07.002
  26. Nadeem, D., Kiamehr, M., Yang, X., Su, B., "Fabrication and in vitro evaluation of a spongelike bioactive-glass/gelatin composite scaffold for bone tissue engineering", Materials Science and Engineering: C, Vol. 33, No. 5, (2013), 2669-2678. https://doi.org/10.1016/j.msec.2013.02.021
  27. Barabadi, Z., Azami, M., Sharifi, E., Karimi, , Lotfibakhshaiesh, N., Roozafzoon, R., Joghataei, M. T., Ai, J., "Fabrication of hydrogel based nanocomposite scaffold containing bioactive glass nanoparticles for myocardial tissue engineering", Materials Science and Engineering: C, Vol. 69, (2016), 1137-1146. https://doi.org/10.1016/j.msec.2016.08.012
  28. Hesaraki, S., Nazarian, H., Pourbaghi-Masouleh, M., Borhan, S., "Comparative study of mesenchymal stem cells osteogenic differentiation on low-temperature biomineralized nanocrystalline carbonated hydroxyapatite and sintered hydroxyapatite", Journal of Biomedical Material Research Part B: Applied Biomaterial, Vol. 102, No. 1, (2014), 108-118. https://doi.org/10.1002/jbm.b.32987
  29. Borhan, S., Hesaraki, S., Behnamghader, A. A., Ghasemi, E., "Rheological evaluations and in vitro studies of injectable bioactive glass–polycaprolactone–sodium alginate composites", Journal of Materials Science: Materials in Medicine, Vol. 27, No. 9, (2016), 1-15. https://doi.org/10.1007/s10856-016-5745-y
  30. Abdollahi, E., Bakhsheshi-Rad, H., "Evaluation of mechanical properties and apatite formation of synthesized fluorapatite-hardystonite nanocomposite scaffolds", Advanced Ceramic Progress, Vol. 4, No. 3-4, (2018), 8-15. https://doi.org/10.30501/acp.2018.92930
  31. Akbarpour, S., Karbasi, S., "Evaluation of physical and mechanical properties of hydroxyapatite/titanium dioxide composite scaffold for tissue engineering applications", Journal of Advanced Materials and Technologies (JAMT), Vol. 3, No. 3, (1393), 17-26. https://doi.org/10.30501/jamt.2635.70268
  32. Nezafati, N., Farokhi, M., Heydari, M., Hesaraki, S., Ahmadi Nasab, N., "In vitro bioactivity and cytocompatablity of an injectable calcium phosphate cement/silanated gelatin microsphere composite bone cement", Composites Part B: Engineering, Vol. 175, (2019), 107146. https://doi.org/10.1016/j.compositesb.2019.107146
  33. Deville, S., "Freeze-casting of porous biomaterials: Structure, properties and opportunities", Materials, Vol. 3, No. 3, (2010), 1913-1927. https://doi.org/10.3390/ma3031913