نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 استادیار، گروه مهندسی مواد، دانشکده مهندسی، دانشگاه ملایر، ملایر، همدان، ایران

2 کارشناسی ارشد، گروه مهندسی مواد، دانشکده مهندسی، دانشگاه ملایر، ملایر، همدان، ایران

چکیده

در این پژوهش، ماده فعال نانوساختار نیکل مولیبدات (NiMoO4)، به‌طور موفقیت‌آمیزی با استفاده از روش ساده هیدروترمال سنتز شد. مشخصه‌یابی ساختاری، با استفاده از پراش اشعه ایکس (XRD) و طیف‌سنجی تبدیل فوریه مادون‌قرمز (FTIR) و بررسی ریخت‌شناسی سطحی ماده حاصله به کمک میکروسکوپ الکترونی روبشی نشر میدانی انجام شد. نتایج نشان داد که ماده الکترودی به‌دست‌آمده، ساختار نانومتری، ریخت‌شناسی    میله­ای­شکل و ساختار بلوری فاز β دارد. بررسی‌های الکتروشیمیایی با استفاده از آزمون‌های ولتامتری چرخه­ای در نرخ روبش­های مختلف و شارژ-تخلیه جریان ثابت در چگالی جریان­های مختلف نشان داد که ماده فعال نیکل مولیبدات دارای ظرفیت ویژه بالای معادل 730 فاراد بر گرم در چگالی جریان 1 آمپر بر گرم و ابقای ظرفیت حدود 2/63 درصد با افزایش ده برابری چگالی جریان به 10 آمپر بر گرم است. نتایج به‌دست‌آمده حاکی از آن است که نانو­میله­های نیکل مولیبدات سنتز­شده می‌توانند کاندیدای مناسبی برای ماده الکترودی ابرخازن­هایی با کارایی بالا باشند.

کلیدواژه‌ها

عنوان مقاله [English]

Hydrothermal Synthesis and Pseudocapacitive Performance of β-NiMoO4 Nanorods

نویسندگان [English]

  • Mahdi Kazazi 1
  • Mina Ataie 2

1 Assistant Professor, Department of Material Engineering, Faculty of Engineering, Malayer University, Malayer, Hamedan, Iran

2 M. Sc., Department of Material Engineering, Faculty of Engineering, Malayer University, Malayer, Hamedan, Iran

چکیده [English]

Abstract     In this research, nanostructured nickel molybdate (NiMoO4) active material was successfully synthesized by a simple hydrothermal route. Structural characterizations were performed using X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR), and surface morphology of the     as-prepared material was obtained by Field Emission Scanning Electron Microscopy (FESEM). The results showed that the as-prepared electrode material has a nanometric and rod-shaped structure and their crystal structure was β-phase. Electrochemical evaluations using cyclic voltammetry at various potential scanning rates and galvanostatic charge-discharge at various current densities show that nickel molybdate active material has the high specific capacitance of 730 F g-1 at a current density of 1 A g-1 and a capacity retention of about 63.2 % even with a 10-fold increase in current density to 10 A g-1. The obtained results imply that the as-synthesized NiMoO4 nanorods could be a promising candidate as electrode material for high performance supercapacitors.

کلیدواژه‌ها [English]

  • Supercapacitors
  • Nickel molybdate
  • Hydrothermal route
  • Nanorods
  • electrochemical performance
  1. Arico, A.S., Bruce, P., Scrosati, B., Tarascon, J.M., Schalkwijk, W.V., "Nanostructured materials for advanced energy conversion and storage devices", Nature Materials, Vol. 4, (2005), 366-377. https://doi.org/10.1038/nmat1368
  2. Huang, Y., Liang, J., Chen, Y., "An overview of the applications of graphene-based materials in supercapacitors", Small, Vol. 8, (2012), 1805-1834. https://doi.org/10.1002/smll.201102635
  3. Karami, R., Kazazi, M., "Synthesis, characterization and electrochemical performance of nanostructured cobalt oxide and nickel cobalt oxide active materials for supercapacitors", Journal of Advanced Materials and Technologies (JAMT), Vol. 6, (2017), 61-68. (In Farsi). https://doi.org/10.30501/jamt.2017.70372
  4. Liu, C., Li, F., Ma, L.P., Cheng, H.M., "Advanced materials for energy storage", Advanced Materials, Vol. 22, (2010), E28-E62. https://doi.org/10.1002/adma.200903328
  5. Choi, D., Blomgren, G.E., Kumta, P.N., "Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors", Advanced Materials, Vol. 18, (2006), 1178-1182. https://doi.org/10.1002/adma.200502471
  6. Parvizi, P., Kazazi, M., "Binder-free copper hexacyanoferrate electrode prepared by pulse galvanostatic electrochemical deposition for aqueous-based Al-ion batteries", Advanced Ceramics Progress (ACERP), Vol. 4, (2018), 27-31. https://doi.org/30501/ACP.2018.91122
  7. Wang, J., Polleux, J., Lim, J., Dunn, B., "Pseudocapacitive contributions to electro-chemical energy storage in TiO2 (anatase) nanoparticles", Journal of Physical Chemistry C, Vol. 111, (2007), 14925-14931. https://doi.org/10.1021/jp074464w
  8. Jia, H., Sun, T., Li, C., Ma, J., "Hierarchical porous nanostructures assembled from ultrathin MnO2 nanoflakes with enhanced supercapacitive performances", Journal of Materials Chemistry, Vol. 22, (2012), 2751-2756. https://doi.org/10.1039/C1JM14732C
  9. Yuan, C., Yang, L., Hou, L., Shen, L., Zhang, X., Lou, X.W., "Growth of ultra thin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors", Energy & Environmental Science, Vol. 5, (2012), 7883-7887. https://doi.org/10.1039/C2EE21745G
  10. Liu, D., Wang, X., Wang, X., Tian, W., Liu, J., Zhi, C., He, D., Bando, Y., Golberg, D., "Ultrathin nanoporous Fe3O4-carbon nanosheets with enhanced supercapacitor performance", Journal of Materials Chemistry A, Vol. 1, (2013), 1952-1955. https://doi.org/10.1039/C2TA01035F
  11. Zhang, G., Lou, X.W., "Controlled growth of NiCo2O4 nanorods and ultrathin nanosheets on carbon nanofibers for high-performance supercapacitors", Scientific Reports, Vol. 3, (2013), 1470-1475. https://doi.org/10.1038/srep01470
  12. Kazazi, M., "Effect of electrodeposition current density on the morphological and pseudocapacitance characteristics of porous nano-spherical MnO2 electrode", Ceramics International, Vol. 44, (2018), 10863-10870. https://doi.org/10.1016/j.ceramint.2018.03.138
  13. Kazazi, M., Sedighi, A.R., Mokhtari, M.A., "Pseudocapacitive performance of electrodeposited porous Co3O4 film on electrophoretically modified graphite electrodes with carbon nanotubes", Applied Surface Science, Vol. 441, (2018), 251-257. https://doi.org/10.1016/j.apsusc.2018.02.054
  14. Fan, Y., Ma, W., Hea, J., Du, Y., "CoMoO4 as a novel heterogeneous catalyst of peroxymonosulfate activation for the degradation of organic dyes", RSC Advances, Vol. 7, (2017), 36193-36200. https://doi.org/10.1039/C7RA04761D
  15. Park, K.S., Seo, S.D., Shim, H.W., Kim, D.W., "Electrochemical performance of NixCo1-xMoO4 (0 ≤ x ≤ 1) nanowire anodes for lithium-ion batteries", Nanoscale Research Letter, Vol. 7, (2012). 35-41. https://doi.org/10.1186/1556-276X-7-35
  16. Xiao, W., Chen, J.S., Li, C.M., Xu, R., Lou, X.W., "Synthesis, characterization and lithium storage capability of AMoO4 (A = Ni, Co) nanorods", Chemistry of Materials, Vol. 22, (2010), 746-754. https://doi.org/10.1021/cm9012014
  17. Ding, Y., Wan, Y., Min, Y.L., Zhang, W., "General synthesis and phase control of metal molybdate hydrates MMoO4.nH2O (M = Co, Ni, Mn, n = 0, 3/4, 1) nano/microcrystals by a hydrothermal approach: magnetic, photocatalytic, and electrochemical properties", Inorganic Chemistry, Vol. 47, (2008), 7813-7823. https://doi.org/10.1021/ic8007975
  18. Senthilkumar, B., Sankar, K.V., Selvan, R.K., Danielle, M., Manickam, M., "Nano α-NiMoO4 as a new electrode for electrochemical supercapacitors", RSC Advances, Vol. 3, (2013), 352-357. https://doi.org/10.1039/C2RA22743F
  19. Wan, H., Jiang, J., Ji, X., Miao, L., Zhang, L., Xu, K., Chen, H., Ruan, Y., "Rapid microwave-assisted synthesis NiMoO4 -H2O nanoclusters for supercapacitors", Materials Letters, Vol. 108, (2013), 164-167. https://doi.org/10.1016/j.matlet.2013.06.099
  20. Lu, X., Jia, W., Chai, H., Hu, J., Wang, S., Cao, Y., "Solid-state chemical fabrication of one-dimensional mesoporous β-nickel molybdate nanorods as remarkable electrode material for supercapacitors", Journal of Colloid and Interface Science, Vol. 534, (2019), 322-331. https://doi.org/10.1016/j.jcis.2018.09.042
  21. Feng, X., Ning, J., Wang, D., Zhang, J., Xia, M., Wang, Y., Hao, Y., "Heterostructure arrays of NiMoO4 nanoflakes on N-doping of graphene for high-performance asymmetric supercapacitors", Journal of Alloys and Compounds, Vol. 816, (2020), 152625-152634. https://doi.org/10.1016/j.jallcom.2019.152625
  22. Tao, Y., Ruiyi, L., Tingting, Y., Zaijun, L., "Nickel/cobalt layered double hydroxide hollow microspheres with hydrangea-like morphology for high-performance supercapacitors", Electrochimica Acta, Vol. 152, (2015), 530-537. https://doi.org/10.1016/j.electacta.2014.08.149
  23. Moreno, B., Chinarro, E., Colomer, M.T., Jurado, J.R., "Combustion synthesis and electrical behavior of nanometric β-NiMoO4", Journal of Physical Chemistry C, Vol. 114, (2010), 4251-4257. https://doi.org/10.1021/jp907870a
  24. Chen, S., Xing, W., Duan, J., Hu, X., Qiao, S.Z., "Nanostructured morphology control for efficient supercapacitor electrodes", Journal of Materials Chemistry A, Vol. 1, (2013), 2941-2954. https://doi.org/10.1039/C2TA00627H
  25. Jiang, H., Zhao, T., Li, C., Ma, J., "Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakes for high-performance supercapacitors", Journal of Materials Chemistry, Vol. 21, (2011), 3818-3823. https://doi.org/10.1039/C0JM03830J
  26. Guo, D., Zhang, P., Zhang, H., Yu, X., Zhu, J., Li, Q., Wang, T., "NiMoO4 nanowires supported on Ni foam as novel advanced electrodes for supercapacitors", Journal of Materials Chemistry A, Vol. 1, (2013), 9024-9027. https://doi.org/10.1039/C3TA11487B
  27. Liu, M.C., Kang, L., Kong, L.B., Lu, C., Ma, X.J., Li, X.M., Luo, Y.C., "Facile synthesis of NiMoO4xH2O nanorods as a positive electrode material for supercapacitors", RSC Advances, Vol. 3, (2013), 6472-6478. https://doi.org/10.1039/C3RA22993A
  28. Wu, M.S., Lyu, L.J., Syu, J.H., "Copper and nickel hexacyanoferrate nanostructures with graphene-coated stainless steel sheets for electrochemical supercapacitors", Journal of Power Sources, Vol. 297, (2015), 75-82. https://doi.org/10.1016/j.jpowsour.2015.07.101
  29. Kazazi, M., Faryabi, M., "Electrochemically anchored manganese hexacyanoferrate nanocubes on three-dimensional porous graphene scaffold: Towards a potential application in high-performance asymmetric supercapacitors", Journal of Power Sources, Vol. 449, (2020), 227510. https://doi.org/10.1016/j.jpowsour.2019.227510
  30. Singh, A.K., Sarkar, D., Khan, G.G., Mandal, K., "Unique hydrogenated Ni/NiO core/shell 1D nano-heterostructures with superior electrochemical performance as supercapacitors", Journal of Materials Chemistry A, Vol. 1, (2013), 12759-12767. https://doi.org/10.1039/C3TA12736B