نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 گروه شیمی ، مرکز آموزش عالی استهبان، استهبان، فارس، ایران

2 گروه شیمی، دانشکده علوم پایه، دانشگاه هرمزگان، بندرعباس، هرمزگان، ایران

چکیده

در دهه گذشته، موارد فراوانی از روش‌های شیمیایی اصلاح‌شده، برای سنتز سبز نانومواد، گزارش‌ شده است. در این مطالعه، نظر به خواص قابل‌توجه نانومواد و مباحث زیست­ محیطی، روشی سریع و زیست­ سازگار، به ­صورت گزینه­ ای جدید، برای سنتز نانوذرات اکسید مس، با استفاده از عصاره گیاه سلمک، به‌عنوان یک عامل احیاکننده قابل‌تجدید­پذیر و غیرسمی و پایدارکننده­ای مؤثر، معرفی شد. قابل‌ذکر است که روش کنونی سنتز، می‌تواند امکان تولید سریع، ارزان و با راندمان بالای نانوذرات اکسید مس را با ریخت ­شناسی کروی (135 نانومتر)، در دما و فشار محیط، فراهم کند. بهینه‌سازی معیارهای مهم در تشکیل نانو­ذرات اکسید مس، نظیر pH، غلظت یون مس، مقدار عصاره، زمان و دما، بررسی شد. تشکیل نانوذرات اکسید مس، با آزمونهای طیف­ سنجی جذبی فرابنفش- مرئی، پراش پرتو ایکس، طیف ­سنجی تبدیل فوریه مادون‌قرمز و میکروسکوپ الکترونی عبوری، تأیید شد. به­ دلیل پایداری خوب و فعالیت کاتالیزوری زیاد نانوذرات اکسید مس سنتزشده، از آن‌ها، برای تخریب رنگ‌های متیلن­ بلو و رودامین ­بی، به ­عنوان آلاینده ­های رنگی آب، در حضور سدیم بوروهیدرید، در دمای اتاق، استفاده شد. فرایند واکنش، از طریق اندازه ­گیری­ های جذب فرابنفش- مرئی، در فواصل منظم زمانی، دنبال شد. کاهش متیلن­بلو و رودامین­ بی، مطابق شرایط واکنش، به ­ترتیب در مدت ‌زمان 8 و 52 دقیقه، انجام شد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Rapid and Cost-Effective Biosynthesis of Copper Oxide Nanoparticles and Its Application as an Efficient Catalyst for Dye Removal in Aqueous Media

نویسندگان [English]

  • Fatemeh Sedaghati 1
  • Fayezeh Samari 2
  • Mojgan Kamali 2

1 Department of Chemistry, Estahban Higher Education Center, Estahban, Fars, Iran

2 Department of Chemistry, University of Hormozgan, Bandar Abbas, Hormozgan, Iran

چکیده [English]

In the last decade, many cases of modified chemical processes for the green synthesis of nanomaterials have been reported. Considering the remarkable properties of nanomaterials and environmental issues, a rapid and biocompatible approach as a new option for the synthesis of copper oxide nanoparticles (CuO-NPs) using Chenopodium album )C.album(leaf extract, as a renewable and non-toxic reducing agent and an effective stabilizer, was presented in this study. It is noteworthy that the current synthesis process can provide the possibility of rapid, cheap, and high efficiency production of CuO nanoparticles with a spherical morphology (135 nm) at ambient temperature and pressure. Optimization of important parameters in the formation of CuO-NPs, such as pH, copper ion concentration, the quantity of leaf extract, and incubation time and temperature was examined. The formation of CuO-NPs was confirmed by UltraViolet-Visible (UV–Vis) spectroscopy, X-Ray Diffraction (XRD), Fourier Transform InfraRed (FT-IR) spectroscopy, and Transmission Electron Microscopy (TEM). Owing to the good stability and superior catalytic activity of the synthesized CuO-NPs, they were used to degrade methylene blue (MB) and rhodamine B (RhB) dyes as water colour contaminants in the presence of NaBH4 at room temperature. The reaction process was monitored using UV-visible measurements at regular intervals. According to the reaction conditions, reduction of MB and RhB occurred at 8 min and 52 min, respectively.

کلیدواژه‌ها [English]

  • Green Synthesis
  • Copper Oxide Nanoparticles
  • Dye Pollution
  • Catalyst
  • Environment
1.   Ekrami-Kakhki, M. -S., Farzaneh, N., Abbasi, S., "Improved electrocatalytic activity of Pt-SrCoO3-δ nanoparticles supported on reduced graphene oxide for methanol electrooxidation", Journal of Advanced Materials and Technology (JAMT), Vol. 8, No. 3, (2019), 49-58. https://doi.org/10.30501/JAMT.2019.93884
2.   He, D., Xing, S., Sun, B., Cai, H., Suo, H., Zhao, C., "Design and construction of three-dimensional flower-like CuO hierarchical nanostructures on copper foam for high performance supercapacitor", Electrochimica Acta, Vol. 210, (2016), 639-645. https://doi.org/10.1016/j.electacta.2016.05.196
3.   Kalakonda, P., Banne, S., "Synthesis and optical properties of highly stabilized peptide-coated silver nanoparticles", Silver Nanoparticles-Fabrication, Characterization and Applications, Vol. 39, No. 1, (2018), 109-117. https://doi.org/10.5772/intechopen.76829
4.   Pourgolmohammad, B., Masoudpanah, M., Aboutalebi, M. R., "Removal of cadmium (II) using CoFe2O4 powders synthesized by solution combustion method", Journal of Advanced Materials and Technology (JAMT), Vol. 7, No. 1, (2019), 11-17. https://doi.org/ 10.30501/jamt.2018.91619
5.   Wang, T., Su, W., Fu, Y., Hu, J., "Controllably annealed CuO-nanoparticle modified ITO electrodes: Characterisation and electrochemical studies", Applied Surface Science, Vol. 390, (2016), 795-803. https://doi.org/10.1016/j.apsusc.2016.08.159
6.   Gawande, M. B., Goswami, A., Felpin, F. X., Asefa, T., Huang, X., Silva, R., Zou, X., Zboril, R., Varma, R. S., "Cu and Cu-based nanoparticles: Synthesis and applications in catalysis", Chemical Reviews, Vol. 116, No. 6, (2016), 3722-3811. https://doi.org/10.1021/acs.chemrev.5b00482
7.   Beevi, M. H., Vignesh, S., Pandiyarajan, T., Jegatheesan, P., James, R. A., Giridharan, N. V., Karthikeyan, B., "Synthesis and antifungal studies on CuO nanostructures", Advanced Materials Research, Vol. 488-489, (2012), 666-670. https://doi.org/10.4028/www.scientific.net/AMR.488-489.666
8.   Gupta, V. K., Chandra, R., Tyagi, I., Verma, M., "Removal of hexavalent chromium ions using CuO nanoparticles for water purification applications", Journal of Colloid and Interface Science, Vol. 478, (2016), 54-62. https://doi.org/10.1016/j.jcis.2016.05.064
9.   Buazar, F., Sweidi, S., Badri, M., Kroushawi, F., "Biofabrication of highly pure copper oxide nanoparticles using wheat seed extract and their catalytic activity: A mechanistic approach", Green Processing and Synthesis, Vol. 8, No. 1, (2019), 691-702. https://doi.org/10.1515/gps-2019-0040
10. Zhou, K., Wang, R., Xu, B., Li, Y., "Synthesis, characterization and catalytic properties of CuO nanocrystals with various shapes", Nanotechnology, Vol. 17, No. 15, (2006), 3939-3943. https://doi.org/10.1088/0957-4484/17/15/055
11. Bagherzadeh, M., Mousavi, N., Amini, M., Gautam, S., Singh, J. P., Chae, K. H., "Cu2O nanocrystals with various morphology: Synthesis, characterization and catalytic properties", Chinese Chemical Letters, Vol. 28, No. 5, (2017), 1125-1130. https://doi.org/10.1016/j.cclet.2017.01.022
12. Wu, H. -Q., Wei, X. -W., Shao, M. -W., Gu, J. -S., Qu, M. -Z., "Synthesis of copper oxide nanoparticles using carbon nanotubes as templates", Chemical Physics Letters, Vol. 364, No. 1-2, (2002), 152-156. https://doi.org/10.1016/S0009-2614(02)01301-5
13. Jisen, W., Jinkai, Y., Jinquan, S., Ying, B., "Synthesis of copper oxide nanomaterials and the growth mechanism of copper oxide nanorods", Materials and Design, Vol. 25, No. 7, (2004), 625-629. https://doi.org/10.1016/j.matdes.2004.03.004
14. Devi, A. B., Moirangthem, D. S., Talukdar, N. C., Devi, M. D., Singh, N. R., Luwang, M. N., "Novel synthesis and characterization of CuO nanomaterials: Biological applications", Chinese Chemical Letters, Vol. 25, No. 12, (2014), 1615-1619. https://doi.org/10.1016/j.cclet.2014.07.014
15. Vijayaraghavan, K., Ashokkumar, T., "Plant-mediated biosynthesis of metallic nanoparticles: A review of literature, factors affecting synthesis, characterization techniques and applications", Journal of Environmental Chemical Engineering, Vol. 5, No. 5, (2017), 4866-4883. https://doi.org/10.1016/j.jece.2017.09.026
16. Hu, J., Ahmed, S., Ahmad, M., Swami, B. L., Ikram, S., "A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise", International Journal of Electrochemical Science, Vol. 10, No. 12, (2016), 10668-10676. https://doi.org/10.1016/j.jare.2015.02.007
17. Singh, J., Dutta, T., Kim, K. -H., Rawat, M., Samddar, P., Kumar, P., "Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation", Journal of Nanobiotechnology, Vol. 16, No. 1, (2018), 84-107. https://doi.org/10.1186/s12951-018-0408-4
18. Chowdhury, R., Khan, A., Rashid, M. H., "Green synthesis of CuO nanoparticles using Lantana Camara flower extract and their potential catalytic activity towards the Aza-Michael reaction", RSC Advances, Vol. 10, No. 24, (2020), 14374-14385. https://doi.org/10.1039/D0RA01479F
19. Prathna, T. C., Chandrasekaran, N., Raichur, A. M., Mukherjee, A., "Biomimetic synthesis of silver nanoparticles by citrus limon (lemon) aqueous extract and theoretical prediction of particle size", Colloids and Surfaces B: Biointerfaces, Vol. 82, No. 1, (2011), 152-159. https://doi.org/10.1016/j.colsurfb.2010.08.036
20. Mehdizadeh, P., Orooji, Y., Amiri, O., Salavati-Niasari, M., Moayedi, H., "Green synthesis using cherry and orange juice and characterization of TbFeO3 ceramic nanostructures and their application as photocatalysts under UV light for removal of organic dyes in water", Journal of Cleaner Production, Vol. 252, No. 12, (2020), 119765-119772. https://doi.org/10.1016/j.jclepro.2019.119765
21. Alinezhad, H., Pakzad, K., "Green synthesis of copper oxide nanoparticles with an extract of Euphorbia Maculata and their use in the Biginelli reaction", Organic Preparations and Procedures International, Vol. 52, No. 4, (2020), 319-327. https://doi.org/10.1080/00304948.2020.1764819
22. Gour, A., Jain, N. K., "Advances in green synthesis of nanoparticles", Artificial Cells, Nanomedicine, and Biotechnology, Vol. 47, No. 1, (2019), 844-851. https://doi.org/10.1080/21691401.2019.1577878
23. Singh, J., Mehta, A., Rawat, M., Basu, S., "Green synthesis of silver nanoparticles using sun dried Tulsi leaves and its catalytic application for 4-Nitrophenol reduction", Journal of Environmental Chemical Engineering, Vol. 6, No. 1, (2018), 1468-1474. https://doi.org/10.1016/j.jece.2018.01.054
24. Haverkamp, R. G., Marshall, A. T., "The mechanism of metal nanoparticle formation in plants: Limits on accumulation", Journal of Nanoparticle Research, Vol. 11, No. 6, (2009), 1453-1463. https://doi.org/10.1007/s11051-008-9533-6
25. Ibrahim, L. F., Kawashty, S. A., Baiuomy, A. R., Shabana, M. M., El-Eraky, W. I., El-Negoumy, S. I., "A comparative study of the flavonoids and some biological activities of two Chenopodium species", Chemistry of Natural Compounds, Vol. 43, No. 1, (2007), 24-28. https://doi.org/10.1007/s10600-007-0056-7
26. Dwivedi, A. D., Gopal, K., "Biosynthesis of silver and gold nanoparticles using Chenopodium Album leaf extract", Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 369, No. 1-3, (2010), 27-33. https://doi.org/10.1016/j.colsurfa.2010.07.020
27. Fatima, B., Siddiqui, S. I., Ahmed, R., Chaudhry, S. A., "Preparation of functionalized-CuO nanoparticles using Brassica Rapa leave extract for water purification", Desalination and Water Treatment, Vol. 164, (2019), 192-205. https://doi.org/10.5004/dwt.2019.24393
28. Shah, R., Pathan, A., Vaghela, H., Ameta, S. C., Parmar, K., "Green synthesis and characterization of copper nanoparticles using mixture (Zingiber Officinale, Piper Nigrum and Piper Longum) extract and its antimicrobial activity", Chemical Science Transactions, Vol. 8, No. 1, (2019), 63-69. https://doi.org/10.7598/cst2019.1517
29. Kamali, M., Samari, F., Sedaghati, F., "Low-temperature phyto-synthesis of copper oxide nanosheets: Its catalytic effect and application for colorimetric sensing", Materials Science and Engineering C, Vol. 103, (2019), 109744-109753. https://doi.org/10.1016/j.msec.2019.109744
30. Mohan, D. A. C., "Synthesis of copper nanoparticles using bio method in Cassia Auriculata leaves extract", World Journal of Pharmaceutical Research, Vol. 6, No. 4, (2017), 1058-1065. https://doi.org/10.20959/wjpr20174-8138
31. Holkar, C. R., Jadhav, A. J., Pinjari, D. V., Mahamuni, N. M., Pandit, A. B., "A critical review on textile wastewater treatments: possible approaches", Journal of Environmental Management, Vol. 182, (2016), 351-366. https://doi.org/10.1016/j.jenvman.2016.07.090
32. Endashaw, M., "Review on the removal of dyes by photodegradation using metal-organic frameworks under light irradiation", Chemistry and Materials Research, Vol. 12, No. 1, (2020), 14-21. https://doi.org/10.7176/CMR/12-1-03
33. Sreeju, N., Rufus, A., Philip, D., "Studies on catalytic degradation of organic pollutants and anti-bacterial property using biosynthesized CuO nanostructures", Journal of Molecular Liquids, Vol. 242, (2017), 690-700. https://doi.org/10.1016/j.molliq.2017.07.077
34. David, L., Moldovan, B., "Green synthesis of biogenic silver nanoparticles for efficient catalytic removal of harmful organic dyes", Nanomaterials, Vol. 10, No. 2, (2020), 202. https://doi.org/10.3390/nano10020202
35. Abbasi, S., Farahbod, F., Imani, M., Koroushavi, A., "The study of kinetic reaction of the photocatalytic elimination of methyl orange in the presence of magnetic composite of Fe3O4-ZnO based on graphene oxide", Journal of Advanced Materials and Technology (JAMT), Vol. 9, No. 1, (2020), 39-48. https://doi.org/10.30501/JAMT.2020.105744
36. Begum, R., Najeeb, J., Sattar, A., Naseem, K., Irfan, A., Al-Sehemi, A. G., Farooqi, Z. H., "Chemical reduction of methylene blue in the presence of nanocatalysts: A critical review", Reviews in Chemical Engineering, Vol. 36, No. 6, (2019), 749-770. https://doi.org/10.1515/revce-2018-0047
37. Sreeju., N., Rufus, A., Philip, D., "Microwave-assisted rapid synthesis of copper nanoparticles with exceptional stability and their multifaceted applications", Journal of Molecular Liquids, Vol. 221, (2016), 1008-1021. https://doi.org/10.1016/j.molliq.2016.06.080
38. Nasrollahzadeh, M., Sajjadi, M., Mohammad Sajadi, S., "Biosynthesis of copper nanoparticles supported on manganese dioxide nanoparticles using Centella Asiatica L. leaf extract for the efficient catalytic reduction of organic dyes and nitroarenes", Chinese Journal of Catalysis, Vol. 39, No. 1, (2018), 109-117. https://doi.org/10.1016/S1872-2067(17)62915-2
39. Abdel-Aziz, M. S., Shaheen, M. S., El-Nekeety, A. A., Abdel-Wahhab, M. A., "Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium Murale leaf extract", Journal of Saudi Chemical Society, Vol. 18, No. 4, (2014), 356-363. https://doi.org/10.1016/j.jscs.2013.09.011
40. Singh, S., Kumar, N., Kumar, M., Jyoti, Agarwal, A., Mizaikoff, B., "Electrochemical sensing and remediation of 4-nitrophenol using bio-synthesized copper oxide nanoparticles", Chemical Engineering Journal, Vol. 313, (2017), 283-292. https://doi.org/10.1016/j.cej.2016.12.049
41. Dubey, S. P., Lahtinen, M., Särkkä, H., Sillanpää, M., "Bioprospective of Sorbus Aucuparia leaf extract in development of silver and gold nanocolloids", Colloids and Surfaces B: Biointerfaces, Vol. 80, No. 1, (2010), 26-33. https://doi.org/10.1016/j.colsurfb.2010.05.024
42. Singh, J., Dhaliwal, A. S., "Water retention and controlled release of KCl by using microwave-assisted green synthesis of Xanthan gum-Cl-poly (acrylic acid)/AgNPs hydrogel nanocomposite", Polymer Bulletin, (2019). https://doi.org/10.1007/s00289-019-02990-x
43. Galagan, Y., Hsu, S. -H., Su, W. -F., "Monitoring time and temperature by methylene blue containing polyacrylate film", Sensors and Actuators B: Chemical, Vol. 144, No. 1, (2010), 49-55. https://doi.org/10.1016/j.snb.2009.10.011
44. Murugan, E., Jebaranjitham, J. N., "Dendrimer grafted core-shell Fe3O4-polymer magnetic nanocomposites stabilized with AuNPs for enhanced catalytic degradation of rhodamine B - A kinetic study", Chemical Engineering Journal, Vol. 259, (2015), 266-276. https://doi.org/10.1016/j.cej.2014.07.121