نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 گروه زیست‌مواد، پژوهشکده فناوری نانو و مواد پیشرفته، پژوهشگاه مواد و انرژی، مشکین دشت، البرز، ایران

2 پژوهشگاه شیمی و مهندسی شیمی ایران، تهران، ایران

چکیده

خصوصیات منحصر به فرد نانوذرات منگنز اکسید شامل خواص کاتالیستی، مغناطیسی و شیمیایی، به شدت تحت تأثیر اندازه ذرات قرار می­ گیرد. در این پژوهش، از روش تجزیه حرارتی، برای تولید نانوذرات منگنز (II) اکسید، با توزیع اندازه ذرات یکنواخت، به عنوان روشی آسان، با تکرار پذیری و راندمان بالا، استفاده شد. با بررسی و کنترل شرایط واکنش که شامل پیش ماده، حلال، نوع سورفکتانت و نرخ افزایش دما است، روشی تکرار پذیر و قابل کنترل، برای سنتز نانوذرات منگنز (II) اکسید ارائه شد. از دو نوع پیش ماده منگنز (II) استیل استونات و منگنز (II) اولئات، استفاده شد. سنتز منگنز (II) اولئات، با استفاده از واکنش منگنز (II) کلرید با اولئیک اسید، انجام شد. نقش دی بنزیل تر و 1-اکتادسن نیز، به عنوان حلال واکنش، مورد مطالعه قرار گرفت. نتایج حاصل از الگوی پراش اشعه ایکس، تصویر برداری میکروسکوپ الکترونی روبشی گسیل میدانی و میکروسکوپ الکترونی عبوری، نشان دهنده سنتز موفق نانوذرات منگنز (II) اکسید با ابعاد حدود ده نانومتر بود. بر اساس آنالیزهای انجام شده، نانوذرات منگنز اکسید با عدد اکسایش دو سنتز ‌شدند و اثری از وجود منگنز با عدد اکسایش سه و دیگر حالت‌های اکسایش، مشاهده نشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Synthesis of Manganese Oxide Nanoparticles Using Thermal Decomposition Method

نویسندگان [English]

  • Mahdi Arian 1
  • Salman Taheri 2
  • Ali Zamanian 1
  • Akbar Esmaeilnejad 1

1 Biomaterials Research Group, Department of Nano-Technology and Advanced Materials, Materials and Energy Research Center, MeshkinDasht, Alborz, Iran

2 Chemistry and Chemical Engineering Research Center of Iran (CCERCI), P. O. Box: 14335-186, Tehran, Tehran, Iran

چکیده [English]

The unique properties of manganese oxide nanoparticles, including catalytic, magnetic, and chemical properties are strongly influenced by the particle size. In this research, the thermal decomposition method for the production of manganese (II) oxide nanoparticles with uniform particle size distribution, high reproducibility, simple method, and high efficiency has been used. The repeatable and controllable method for the synthesis of manganese (II) oxide nanoparticles is provided by checking and controlling the reaction conditions, including precursor, solvent, and type of surfactant, and rate of temperature rise. Also, two types of precursors including manganese (II) acetylacetonate and manganese (II) oleate have been used. Manganese (II) oleate synthesis was carried out using a reaction of manganese (II) chloride with oleic acid. The effect of dibenzyl ether and 1-octadecene has been studied as a reaction solvent. The results of the X-ray diffraction pattern, field emission scanning electron microscopic imaging, and transmission electron microscopy confirm that manganese (II) oxide nanoparticles have been successfully synthesized with a size of about 10 nm. According to the analysis, manganese oxide nanoparticles were synthesized with oxidation numbers (II) and no other oxidation number was observed.

کلیدواژه‌ها [English]

  • Nanoparticle Synthesis
  • Thermal Decomposition Method
  • Manganese Oxide Nanoparticles
  • Metal Oxide Nanoparticles
1.   Wei Hsu, B. Y., Kirby, G., Tan, A., Alexander M., Seifalian, A. M., Li, X., Wang, J., "Relaxivity and toxicological properties of manganese oxide nanoparticles for MRI applications", RSC Advances, Vol. 6, No. 51, (2016), 45462-45474. https://doi.org/10.1039/C6RA04421B
2.   Najafpour, M. M., Hołyńska, M., Salimi, S., "Applications of the “nano to bulk” Mn oxides: Mn oxide as a Swiss army knife", Coordination Chemistry Reviews, Vol. 285, (2015), 65-75. https://doi.org/10.1021/cm200414c
3.   Banerjee, A., Bertolesi, G., Ling, C., Blasiak, B., Purchase, A., Calderon, O., Tomanek, B., Trudel, S., "Bifunctional pyrrolidin-2-one terminated manganese oxide nanoparticles for combined magnetic resonance and fluorescence imaging", ACS Applied Materials & Interfaces, Vol. 11, No. 14, (2019), 13069-13078. https://doi.org/10.1021/acsami.8b21762
4.   Deka, K., Guleria, A., Kumar, D., Biswas, J., Lodha, S., Kaushik, S. D., Dasgupta, S., Deb, P., "Exclusive T2 MRI contrast enhancement by mesoporous carbon framework encapsulated manganese oxide nanoparticles", Current Applied Physics, Vol. 20, No. 1, (2020), 89-95. https://doi.org/10.1016/j.cap.2019.10.010
5.   Mikac, L., Marić, I., Štefanić, G., Jurkinc, T., Ivanda, M., Gotić, M., "Radiolytic synthesis of manganese oxides and their ability to decolorize methylene blue in aqueous solutions", Applied Surface Science, Vol. 476, (2019), 1086-1095. https://doi.org/10.1016/j.apsusc.2019.01.212
6.   Can, K., Üzer, A., Apak, R., "A manganese oxide (MnOx)-based colorimetric nanosensor for indirect measurement of lipophilic and hydrophilic antioxidant capacity", Analytical Methods, Vol. 12, (2020), 448-455. https://doi.org/10.1039/c9ay02027f
7.   Chatterji, T., Su, Y., Iles, G. N., Lee, Y. C., Khandhar, A. P., Krishnan, K. M., "Antiferromagnetic spin correlations in MnO nanoparticles", Journal of Magnetism and Magnetic Materials, Vol. 322, No. 21, (2010) 3333-3336. https://doi.org/10.1016/j.jmmm.2010.06.019
8.   Lee, G. H., Huh, S. H., Jeong, J. W., Choi, B. J., Kim S. H., Ri, H. C., "Anomalous magnetic properties of MnO nanoclusters", Journal of the American Chemical Society, Vol. 124, No. 41, (2002), 12094-12095. https://doi.org/10.1021/ja027558m
9.   Morales, M. A., Skomski, R., Fritz, S., Shelburne, G., Shield, J. E., Yin M., Brien, S. O., Leslie-Pelecky, D. L., "Surface anisotropy and magnetic freezing of MnO nanoparticles", Physical Review B, Vol. 75, No. 13, (2007), 134423. https://doi.org/10.1103
10. Seo, W. S., Jo, H. H., Lee, K., Kim, B., Oh, S. J., Park, J. T., "Size-dependent magnetic properties of colloidal Mn3O4 and MnO nanoparticles", Angewandte Chemie, Vol. 116, No. 9, (2004), 1135-1137. https://doi.org/10.1002/anie.200352400
11. Park, J., Joo, J., Won, S. G., Jang, Y., Hyeon, T., "Synthesis of monodisperse spherical nanocrystals", Angewandte Chemie International Edition, Vol. 46, No. 25, (2007), 4630-4660. https://doi.org/10.1002/anie.200603148
12. McDonagh, B. H., Singh, G., Hak, S., Bandyopadhyay, S., Augestad, I. L., Peddis, D., Sandvig, I., Sandvig, A., Glomm, W. R., "L-DOPA-coated manganese oxide nanoparticles as dual MRI", Contrast Agents and Drug-Delivery Vehicles,Vol. 12, No. 3, (2016), 301-306. https://doi.org/10.1002/smll.201502545
13. LaMer, V. K., Dinegar, R. H., "Theory, production and mechanism of formation of monodispersed hydrosols", Journal of the American Chemical Society, Vol. 72, No. 11, (1950), 4847-4854. https://doi.org/10.1021/ja01167a001
14. Chen, Y., Johnson, E., Peng, X., "Formation of monodisperse and shape-controlled MnO nanocrystals in non-injection synthesis:  Self-focusing via ripening", Journal of the American Chemical Society, Vol. 129, No. 35, (2007), 10937-10947. https://doi.org/10.1021/ja073023n
15. Si, H., Wang, H., Shen, H., Zhou, C., Li, S., Lou, S., Xu, W., Du, Z., Li, L. S., "Controlled synthesis of monodisperse manganese oxide nanocrystals", CrystEngComm, Vol. 11, No. 6, (2009), 1128-1132. https://doi.org/10.1039/b901603c
16. Schladt, T. D., Graf, T., Tremel, W., "Synthesis and characterization of monodisperse manganese oxide nanoparticles-evaluation of the nucleation and growth mechanism", Chemistry of Materials, Vol. 21, No. 14, (2009), 3183-3190. https://doi.org/10.1021/cm900663t
17. Sun, S., Zeng, H., "Size-controlled synthesis of magnetite nanoparticles", Journal of the American Chemical Society, Vol. 124, No. 28, (2002), 8204-8205. https://doi.org/10.1021/ja026501x
18. Jana, N. R., Chen, Y., Peng, X., "Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach", Chemistry of Materials, Vol. 16, No. 20, (2004), 3931-3935. https://doi.org/10.1021/cm049221k
19. Park, J., Kang, E., Bae, C. J., Park, J. G., Noh, H. J., Kim, J. Y., Park, J. H., Park, H. M., Hyeon, T., "Synthesis, characterization, and magnetic properties of uniform-sized MnO nanospheres and nanorods", The Journal of Physical Chemistry B, Vol. 108, No. 36, (2004), 13594-13598. https://doi.org/10.1021/jp048229e
20. Yin, M., O'Brien, S., "Synthesis of monodisperse nanocrystals of manganese oxides", Journal of the American Chemical Society, Vol. 125, No. 34, (2003), 10180-10181. https://doi.org/10.1021/ja0362656
21. Park, J., An, K., Hwang, Y., Park, J. G., Noh, H. J., Kim, J. Y., Park, J. H., Hwang, N. M., Hyeon, T., "Ultra-large-scale syntheses of monodisperse nanocrystals", Nature Materials, Vol. 3, No. 12, (2004), 891-895. https://doi.org/10.1038/nmat1251
22. An, K., Park, M., Yu, J. H., Na, H. B., Lee, N., Park, J., Choi, S. H., Song, I. C., Moon, W. K., Hyeon, T., "Synthesis of uniformly sized manganese oxide nanocrystals with various sizes and shapes and characterization of their T1 magnetic resonance relaxivity", European Journal of Inorganic Chemistry, Vol. 12, (2012), 2148-2155. https://doi.org/10.1002/ejic.201101193
23. Schladt, T. D., Schneider, K., Shukoor, M. I., Natalio, F., Bauer, H., Tahir, M. N., Weber, S., Schreiber, L. M., Schröder, H. C., Müllerb, W. E. G., Tremel, W., "Highly soluble multifunctional MnO nanoparticles for simultaneous optical and MRI imaging and cancer treatment using photodynamic therapy", Journal of Materials Chemistry, Vol. 20, No. 38, (2010), 8297-8304. https://doi.org/10.1039/C0JM01465F
24. Bennewitz, M. F., Lobo, T. L., Nkansah, M. K., Ulas, G., Brudvig, G. W., Shapiro, E. M., "Biocompatible and pH-sensitive PLGA encapsulated MnO nanocrystals for molecular and cellular MRI", ACS Nano, Vol. 5, No. 5, (2011), 3438-3446. https://doi.org/10.1021/nn1019779
25. Chen, N., Shao, C., Qu, Y., Li, S., Gu, W., Zheng, T., Ye, L., Yu, C., "Folic acid-conjugated MnO nanoparticles as a T1 contrast agent for magnetic resonance imaging of tiny brain gliomas", ACS Applied Materials & Interfaces, Vol. 22, No. 6, (2014), 19850-19857. https://doi.org/10.1021/am505223t
26. Krimm, S., "The infrared spectra of complex molecules", Journal of Polymer Science: Polymer Letters Edition, Vol. 14, No. 2, (1976), 121-121. https://doi.org/10.1002/pol.1976.130140217
27. Zhang, Z., Zhong, X., Liu, S., Li, D., Han, M., "Aminolysis route to monodisperse titania nanorods with tunable aspect ratio", Angewandte Chemie International Edition, Vol. 44, No. 22, (2005), 3466-3470. https://doi.org/10.1002/anie.200500410