نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 گروه محیط زیست، پژوهشگاه نیرو، تهران، تهران، ایران

2 پژوهشکده نیمه‌هادی‌ها، پژوهشگاه مواد و انرژی، مشکین دشت، البرز، ایران

چکیده

جاذب زیست ­دوست نانوکیتوسان، از طریق ژل شدن یونی، سنتز و جهت بهبود کارایی و عملکرد، با لانتانیوم، اصلاح گردید. برای شناسایی جاذب­ های سنتز شده، از روش ­های طیف سنجی زیر قرمز تبدیل فوریه (FT-IR)، پراش پرتو ایکس (XRD)، میکروسکوپ الکترونی روبشی (SEM)، طیف‌سنجی پراکندگی انرژی پرتو ایکس (EDX) و جذب-واجذب نیتروژن، ‪استفاده و پس از تأیید، جاذب نانو­ساختار، به عنوان جاذبی مناسب برای حذف فسفات، استفاده گردید. به منظور تصحیح نتایج حاصل از فرآیند جذب، مدل­ های جذبی لانگمویر و فروندلیچ، مورد استفاده قرار گرفت. نتایج به دست آمده نشان داد جذب فسفات روی جاذب نانوکیتوسان اصلاح شده با لانتانیوم، از ایزوترم لانگمویر، پیروی می­ کند. بیشینه ظرفیت جذب، 92/144 میلی­ گرم بر گرم است. هم چنین، زمان تعادل فرآیند جذب نیز روی نانوکیتوسان اصلاح شده با لانتانیوم، بررسی شد و داده های آزمایشی، نشان داد که زمان لازم برای رسیدن به تعادل، 30 دقیقه است. اطلاعات سینتیکی بدست آمده، مورد ارزیابی مدل های سینتیکی شبه درجه اول، شبه درجه دوم و نفوذ درون ذره ای، قرارگرفت. بررسی سه مدل سینتیکی، نشان داد که فرآیند جذب با ضریب همبستگی 9967/0، تطابق خوبی با مدل شبه درجه دوم دارد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Removal of Phosphate from Aqueous Media by Lanthanum Modified Nanochitosan

نویسندگان [English]

  • Samira Salehi 1
  • Mojtaba Hosseinifard 2

1 Environment Research Environment Research Department, Energy and Environment Research Center, Niroo Research Institute, Tehran, Tehran, Iran

2 Department of Semiconductors, Materials and Energy Research Center, MeshkinDasht, Alborz, Iran

چکیده [English]

The biosorbent nanochitosan was synthesized by the ionic gelation and modified with lanthanum to improve efficiency and performance. The features of synthesized adsorbents were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray diffraction (EDX) and nitrogen adsorption–desorption isotherms and after confirming the nanostructure adsorbent, used as a suitable adsorbent for phosphate removal. In order to correct the results of the adsorption process, Langmuir and Freundlich adsorption models were used. The results showed that the adsorption of phosphate on lanthanum-modified nanocitosan adsorbent follows the Langmuir isotherm and the maximum adsorption capacity is 144.92 mg/g. The equilibrium time of adsorption process was also studied on lanthanum modified nanocitosan and experimental data showed that the time required to reach equilibrium was 30 min. The kinetic studies of the adsorption process will also be performed on lanthanum modified nanocitosan and the kinetic information obtained will be evaluated by pseudo-first, -second order and intra-particle diffusion kinetic models. Investigation of three kinetic models showed that the adsorption process with a 0.9967 correlation coefficient is in good agreement with pseudo-first kinetic model.

کلیدواژه‌ها [English]

  • Chitosan
  • Lanthanum
  • Phosphate
  • Adsorption
1.   Lee, S. Y., Choi, J. -W., Song, K. G., Choi, K., Lee, Y. J., Jung, K. -W., "Adsorption and mechanistic study for phosphate removal by rice husk-derived biochar functionalized with Mg/Al-calcined layered double hydroxides via co-pyrolysis", Composites Part B: Engineering, Vol. 176, (2019), 107209. https://doi.org/10.1016/j.compositesb.2019.107209
2.   Huang, Z., Cheng, C., Liu, Z., Zeng, H., Feng, B., Zhong, H., Luo, W., Hu, Y., Guo, Z., He, G., Fu, W., "Utilization of a new Gemini surfactant as the collector for the reverse froth flotation of phosphate ore in sustainable production of phosphate fertilizer", Journal of Cleaner Production, Vol. 221, (2019), 108-112. https://doi.org/10.1016/j.jclepro.2019.02.251
3.   Thangavelu, K. P., Kerry, J. P., Tiwari, B., McDonnell, C. K., "Systematic review of novel processing technologies and ingredients for the reduction of phosphate additives in processed meat", Trends in Food Science & Technology, (2019), 10-11. http://hdl.handle.net/11019/2129
4.   Salehi, S., Hosseinifard, M., "Highly efficient removal of phosphate by lanthanum modified nanochitosan-hierarchical ZSM-5 zeolite nanocomposite: Characteristics and mechanism", Cellulose, Vol. 27, (2020), 4637-4664. https://doi.org/10.1007/s10570-020-03094-w
5.   Salehi, S., Hosseinifard, M., "Optimized removal of phosphate and nitrate from aqueous media using zirconium functionalized nanochitosan-graphene oxide composite", Cellulose(2020), 1-25. https://doi.org/10.1007/s10570-020-03382-5
6.   Yazdi, F., Anbia, M., Salehi, S., "Characterization of functionalized chitosan-clinoptilolite nanocomposites for nitrate removal from aqueous media", International Journal of Biological Macromolecules, Vol. 130, (2019), 545-555. https://doi.org/10.1016/j.ijbiomac.2019.02.127
7.   Salehi, S., Anbia, M., "Performance comparison of chitosan–clinoptilolite nanocomposites as adsorbents for vanadium in aqueous media", Cellulose, Vol. 26, No. 9, (2019), 5321-5345. https://doi.org/10.1007/s10570-019-02450-9
8.   Vijayalakshmi, K., Devi, B. M., Latha, S., Gomathi, T., Sudha, P., Venkatesan, J., Anil, S., "Batch adsorption and desorption studies on the removal of lead (II) from aqueous solution using nanochitosan/sodium alginate/microcrystalline cellulose beads", International Journal of Biological Macromolecules, Vol. 104, (2017), 1483-1494. https://doi.org/10.1016/j.ijbiomac.2017.04.120
9.   Kunjachan, S., Jose, S., Lammers, T., "Understanding the mechanism of ionic gelation for synthesis of chitosan nanoparticles using qualitative techniques", Asian Journal of Pharmaceutics (AJP): Free full text articles from Asian Journal of Pharmaceutics, Vol. 4, No. 2, (2014). http://dx.doi.org/10.22377/ajp.v4i2.220
10. Barbosa, G. P., Debone, H. S., Severino, P., Souto, E. B., da Silva, C. F., "Design and characterization of chitosan/zeolite composite films: Effect of zeolite type and zeolite dose on the film properties", Materials Science and Engineering: C, Vol. 60, (2016), 246-254. https://doi.org/10.1016/j.msec.2015.11.034
11. Yan, B., Zeng, C., Yu, L., Wang, C., Zhang, L., "Preparation of hollow zeolite NaA/chitosan composite microspheres via in situ hydrolysis-gelation-hydrothermal synthesis of TEOS", Microporous and Mesoporous Materials, Vol. 257, (2018), 262-271. https://doi.org/10.1016/j.micromeso.2017.08.053
12. Salehi, S., Anbia, M., "Highly efficient CO2 capture with a metal–organic framework-derived porous carbon impregnated with polyethyleneimine", Applied Organometallic Chemistry, Vol. 32, No. 7, (2018), e4390. https://doi.org/10.1002/aoc.4390
13. Salehi, S., Mandegarzad, S., Anbia, M., "Preparation and characterization of metal organic framework-derived nanoporous carbons for highly efficient removal of vanadium from aqueous solution", Journal of Alloys and Compounds, Vol. 812, (2020), 152051. https://doi.org/10.1016/j.jallcom.2019.152051
14. Langmuir, I., "The adsorption of gases on plane surfaces of glass, mica and platinum", Journal of the American Chemical Society, Vol. 40, No. 9, (1918), 1361-1403. https://doi.org/10.1021/ja02242a004
15. Depci, T., Kul, A. R., Önal, Y., "Competitive adsorption of lead and zinc from aqueous solution on activated carbon prepared from Van apple pulp: Study in single-and multi-solute systems", Chemical Engineering Journal, Vol. 200, (2012), 224-236. https://doi.org/10.1016/j.cej.2012.06.077
16. Freundlich, H., "Über die adsorption in lösungen", Zeitschrift für Physikalische Chemie, Vol. 57, No. 1, (1907), 385-470. https://doi.org/10.1515/zpch-1907-5723
17. Ho, Y., Ng, J., McKay, G., "Kinetics of pollutant sorption by biosorbents", Separation and Purification Methods, Vol. 29, No. 2, (2000), 189-232. https://doi.org/10.1081/SPM-100100009
18. Ho, Y. S., McKay, G., "Pseudo-second order model for sorption processes", Process Biochemistry, Vol. 34, No. 5, (1999), 451-465. https://doi.org/10.1016/S0032-9592(98)00112-5
19. Anirudhan, T. S., Suchithra, P., "Equilibrium, kinetic and thermodynamic modeling for the adsorption of heavy metals onto chemically modified hydrotalcite", Indian Journal of Chemical Technology (IJCT), Vol. 17, (2010), 247-259. http://nopr.niscair.res.in/handle/123456789/9995
20. Fang, C., Zhang, T., Li, P., Jiang, R., Wu, S., Nie, H., Wang, Y., "Phosphorus recovery from biogas fermentation liquid by Ca–Mg loaded biochar", Journal of Environmental Sciences, Vol. 29, (2015), 106-114. https://doi.org/10.1016/j.jes.2014.08.019
21. Zhang, Z., Yan, L., Yu, H., Yan, T., Li, X., "Adsorption of phosphate from aqueous solution by vegetable biochar/layered double oxides: Fast removal and mechanistic studies", Bioresource Technology, Vol. 284, (2019), 65-71. https://doi.org/10.1016/j.biortech.2019.03.113
22. Li, R., Wang, J. J., Zhou, B., Awasthi, M. K., Ali, A., Zhang, Z., Gaston, L. A., Lahori, A. H., Mahar, A., "Enhancing phosphate adsorption by Mg/Al layered double hydroxide functionalized biochar with different Mg/Al ratios", Science of the Total Environment, Vol. 559, (2016), 121-129. https://doi.org/10.1016/j.scitotenv.2016.03.151
23. Iftekhar, S., Küçük, M. E., Srivastava, V., Repo, E., Sillanpää, M., "Application of zinc-aluminium layered double hydroxides for adsorptive removal of phosphate and sulfate: Equilibrium, kinetic and thermodynamic", Chemosphere, Vol. 209, (2018), 470-479. https://doi.org/10.1016/j.chemosphere.2018.06.115
24. Shen, H., Wang, Z., Zhou, A., Chen, J., Hu, M., Dong, X., Xia, Q., "Adsorption of phosphate onto amine functionalized nano-sized magnetic polymer adsorbents: Mechanism and magnetic effects", RSC Advances, Vol. 5, (2015), 22080-22090. https://doi.org/10.1039/C4RA14630A
25. Jung, K. -W., Jeong, T. -U., Kang, H. -J., Ahn, K. -H., "Characteristics of biochar derived from marine macroalgae and fabrication of granular biochar by entrapment in calcium-alginate beads for phosphate removal from aqueous solution", Bioresource Technology, Vol. 211, (2016), 108-116. https://doi.org/10.1016/j.biortech.2016.03.066
26. Kong, L., Tian, Y., Li, N., Liu, Y., Zhang, J., Zhang, J., Zuo, W., "Highly-effective phosphate removal from aqueous solutions by calcined nano-porous palygorskite matrix with embedded lanthanum hydroxide", Applied Clay Science, Vol. 162, (2018), 507-517. https://doi.org/10.1016/j.clay.2018.07.005
27. Huang, X., Liao, X., Shi, B., "Adsorption removal of phosphate in industrial wastewater by using metal-loaded skin split waste", Journal of Hazardous Materials, Vol. 166, (2009), 1261-1265. https://doi.org/10.1016/j.jhazmat.2008.12.045
28. Pengthamkeerati, P., Satapanajaru, T., Chularuengoaksorn, P., "Chemical modification of coal fly ash for the removal of phosphate from aqueous solution", Fuel, Vol. 87, (2008), 2469-2476. https://doi.org/10.1016/j.fuel.2008.03.013
29. Zamparas, M., Drosos, M., Georgiou, Y., Deligiannakis, Y., Zacharias, I., "A novel bentonite-humic acid composite material Bephos™ for removal of phosphate and ammonium from eutrophic waters", Chemical Engineering Journal, Vol. 225, (2013), 43-51. https://doi.org/10.1016/j.cej.2013.03.064
30. Banu, H. T., Karthikeyan, P., Meenakshi, S., "Lanthanum (III) encapsulated chitosan-montmorillonite composite for the adsorptive removal of phosphate ions from aqueous solution", International Journal of Biological Macromolecules, Vol. 112, (2018), 284-293. https://doi.org/10.1016/j.ijbiomac.2018.01.138
31. Liao, X. -P., Ding, Y., Wang, B., Shi, B., "Adsorption behavior of phosphate on metal-ions-loaded collagen fiber", Industrial & Engineering Chemistry Research, Vol. 45, No. 11, (2006), 3896-3901. https://doi.org/10.1021/ie051076c
32. Ping, N., Hans-Jörg, B., Bing, L., Xiwu, L., Zhang, Y., "Phosphate removal from wastewater by model-La (III) zeolite adsorbents", Journal of Environmental Sciences, Vol. 20, (2008), 670-674. https://doi.org/10.1016/S1001-0742(08)62111-7
33. Wang, S. -L., Cheng, C. -Y., Tzou, Y. -M., Liaw, R. -B., Chang, T. -W., Chen, J. -H., "Phosphate removal from water using lithium intercalated gibbsite", Journal of Hazardous MaterialsVol.147, (2007), 205-212. https://doi.org/10.1016/j.jhazmat.2006.12.067
34. Das, J., Patra, B., Baliarsingh, N., Parida, K., "Adsorption of phosphate by layered double hydroxides in aqueous solutions", Applied Clay Science, Vol. 32, (2006), 252-260. https://doi.org/10.1016/j.clay.2006.02.005
35. Rodrigues, L. A., da Silva, M. L. C. P., "Thermodynamic and kinetic investigations of phosphate adsorption onto hydrous niobium oxide prepared by homogeneous solution method", Desalination, Vol. 263, (2010), 29-35. https://doi.org/10.1016/j.desal.2010.06.030
36. Rajeswari, A., Amalraj, A., Pius, A., "Removal of phosphate using chitosan-polymer composites", Journal of Environmental Chemical Engineering, Vol. 3, (2015), 2331-2341. https://doi.org/10.1016/j.jece.2015.08.022