نوع مقاله : مقاله کامل پژوهشی

نویسندگان

دانشکده مهندسی مواد و متالورژی، دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

در این تحقیق، پوشش های سرامیکی کربونیترید تیتانیوم آلومینیوم (TiAlCN) با مقادیر مختلفی از آلومینیوم در دمای °C 350 بر زیرلایه های فولاد ابزار گرم کار H13 با استفاده از روش رسوب شیمیایی بخار به کمک پلاسما (PACVD) نشانده شدند. مشخصه یابی پوشش های ایجاد شده با استفاده از آزمایش های پراش پرتو ایکس (GIXRD)، میکروسکوپ الکترونی روبشی گسیل میدانی (FESEM) و میکروسکوپ الکترونی روبشی(SEM) مجهز به آنالیزگر عنصری طیف سنجی پرتو ایکس (EDS)، طیف سنجی تبدیل فوریه مادون قرمز (FTIR)، طیف سنجی رامان،میکروسکوپ الکترونی عبوری (TEM) و میکروسکوپ نیروی اتمی (AFM) انجام شد. ریزسختی پوشش ها توسط آزمایش ریزسختی سنجی ویکرز مورد بررسی قرار گرفت. نتایج بدست آمده نشان داد که پوشش ها دارای یک نانوساختار شامل نانو دانه های بلورین fcc-(Ti,Al)N و/یا fcc-(Ti,Al)(C,N)، hcp-AlN و یک فاز کربنی آمورف می باشند. افزایش مقدار آلومینیوم موجود در پوشش از حدود 10 تا حدود 42 درصد اتمی منجر به کاهش زبری سطحی پوشش از 49±151 نانومتر به 27±88 نانومتر به دلیل ایجاد هسته بیشتر از AlN شد. بیشترید مقدار میکروسختی مربوط به پوشش با مقدار آلومینیوم کمتر بود که در حدود HV0.01 3840±40 به دلیل مقدار ناخالصی کلر و فاز hcp-AlN کمتر، بدست آمد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Characterization of Nanostructure Coatings of Ti-Al-C-N System Deposited Using Plasma Assisted Chemical Vapor Deposition

نویسندگان [English]

  • Mahshid Rashidi
  • Morteza Tamizifar
  • Seyyed Mohammad Ali Boutorabi

Department of Metallurgy and Materials Engineering, University of Science and Technology, Tehran, Iran

چکیده [English]

In this study, titanium aluminium carbonitride (TiAlCN) ceramic coatings with different amount of Al were deposited at 350 °C on H13 hot work tool steel substrates, using pulsed-DC plasma assisted chemical vapor deposition method. Energy-dispersive X-ray spectroscopy (EDS), Fourier-transform infrared spectroscopy (FTIR), glancing incidence X-ray diffraction method (GIXRD), transmission electron microscopy (TEM), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM) and SEM and atomic force microscopy (AFM) were applied for characterizing of the coatings. Microhardness test utilized for evaluating of microhardness of the coatings. The coatings showed a nanostructure consisted of fcc-TiAlN and hcp-AlN nanocrystalline grains and an amorphous carbon phase. Increasing the amount of Al from ~10 to ~42 at.% led to a decrease of the surface roughness of the coating from 151±49 to 88±27 nm, due to the creation of more nuclei of AlN. Coating with the less amount of Al (~10 at.%) presented the highest microhardness of about 3840 HV0.01,due to the less amount of chloride impurity and hcp-AlN phase.

کلیدواژه‌ها [English]

  • Coating
  • Nanostructure
  • TiAlCN
  • PACVD
.  Kheirandish S, Noorian A. Effect of niobium on microstructure of cast AISI H13 hot work tool steel. Journal of Iron and Steel Research International 2008;15:61-6.
2.      Jin N, Yang Y, Luo X, Xia Z. Development of CVD Ti-containing films. Progress in materials science 2013;58:1490-533.
3.    PalDey S, Deevi S. Single layer and multilayer wear resistant coatings of (Ti, Al) N: a review. Materials Science and Engineering: A 2003;342:58-79.
4.   Håkansson G, Sundgren J-E, McIntyre D, Greene J, Münz W-D. Microstructure and physical properties of polycrystalline metastable Ti0. 5Al0. 5N alloys grown by dc magnetron sputter deposition. Thin Solid Films 1987;153:55-65.
5.      Knotek O, Böhmer M, Leyendecker T. On structure and properties of sputtered Ti and Al based hard compound films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 1986;4:2695-700.
6.    Münz WD. Titanium aluminum nitride films: A new alternative to TiN coatings. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 1986;4:2717-25.
7.      Zhang G, Li B, Jiang B, Chen D, Yan F. Microstructure and mechanical properties of multilayer Ti (C, N) films by closed-field unbalanced magnetron sputtering ion plating. Journal of Materials Science & Technology 2010;26:119-24.
8.     Al-Bukhaiti M, Al-Hatab K, Tillmann W, Hoffmann F, Sprute T. Tribological and mechanical properties of Ti/TiAlN/TiAlCN nanoscale multilayer PVD coatings deposited on AISI H11 hot work tool steel. Applied Surface Science 2014;318:180-90.
9.     Choe HJ, Kwon S-H, Lee J-J. Tribological properties and thermal stability of TiAlCN coatings deposited by ICP-assisted sputtering. Surface and Coatings Technology 2013;228:282-5.
10.   Zhang X, Jiang J, Yuqiao Z, Lin J, Wang F, Moore JJ. Effect of carbon on TiAlCN coatings deposited by reactive magnetron sputtering. Surface and Coatings Technology 2008;203:594-7.
11.  Arnold B, Endler I. TEM investigation of TiN x-PACVD-coatings. Microchimica Acta 1997;125:83-7.
12.    Klimek K, Gebauer-Teichmann A, Kaestner P, Rie K-T. Duplex-PACVD coating of surfaces for die casting tools. Surface and Coatings Technology 2007;201:5628-32.
13.   Kullmer R, Lugmair C, Figueras A, Bassas J, Stoiber M, Mitterer C. Microstructure, mechanical and tribological properties of PACVD Ti (B, N) and TiB2 coatings. Surface and Coatings Technology 2003;174:1229-33.
14.   Mitterer C, Holler F, Reitberger D, Badisch E, Stoiber M, Lugmair C, et al. Industrial applications of PACVD hard coatings. Surface and Coatings Technology 2003;163:716-22.
15.    Heim D, Hochreiter R. TiAlN and TiAlCN deposition in an industrial PaCVD-plant. Surface and Coatings Technology 1998;98:1553-6.
16.   Kawata K, Sugimura H, Takai O. Characterization of multilayer films of Ti Al O C N system prepared by pulsed dc plasma-enhanced chemical vapor deposition. Thin Solid Films 2001;390:64-9.
17.  Shieh J, Hon MH. Plasma-enhanced chemical-vapor deposition of titanium aluminum carbonitride/amorphous-carbon nanocomposite thin films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2002;20:87-92.
18.   Ma S, Xu K, Jie W. Plasma nitrided and TiCN coated AISI H13 steel by pulsed dc PECVD and its application for hot-working dies. Surface and Coatings Technology 2005;191:201-5.
19. Movassagh-Alanagh F,  Abdollah-Zadeh A,  Aliofkhazraei M, Abedi M. Improving the wear and corrosion resistance of Ti–6Al–4V alloy by deposition of TiSiN nanocomposite coating with pulsed-DC PACVD. Wear 2017;390:93-103.
20.   Liepack H, Bartsch K, Arnold B, Bauer H-D, Liu X, Knupfer M, et al. Characteristics of excess carbon in PACVD TiC-amorphous carbon layers. Diamond and related materials 2004;13:106-10.
21. Täschner C, Ljungberg B, Hoffmann V, Vogt C, Leonhardt A. Deposition of TiN, TiC and Ti1− xAlxN coatings by pulsed dc plasma enhanced chemical vapour deposition methods. Surface and Coatings Technology 2001;142:823-8.
22.    Shanaghi A, Rouhaghdam ARS,  Ahangarani S,    Chu PK. Effect of plasma CVD operating temperature on nanomechanical properties of TiC nanostructured coating investigated by atomic force microscopy. Materials Research Bulletin 2012;47:2200-5.
23.  Jarms C, Stock H-R, Mayr P. Mechanical properties, structure and oxidation behaviour of Ti1-xAlxN-hard coatings deposited by pulsed dc plasma-assisted chemical vapour deposition (PACVD). Surface and Coatings Technology 1998;108:206-10.
24.   Shieh J, Hon M-H. Observation of plastic deformation in TiAlCN/a-C ceramic nanocomposite coating. Applied Physics A 2005;80:131-4.
25.   Stueber M, Albers U, Leiste H, Ulrich S, Holleck H, Barna P, et al. Multifunctional nanolaminated PVD coatings in the system Ti–Al–N–C by combination of metastable fcc phases and nanocomposite microstructures. Surface and Coatings Technology 2006;200:6162-71.
26.    Stueber M, Barna P, Simmonds M, Albers U, Leiste H, Ziebert C, et al. Constitution and microstructure of magnetron sputtered nanocomposite coatings in the system Ti–Al–N–C. Thin Solid Films 2005;493:104-12.
27.   Zhang X, Qiu Y, Tan Z, Lin J, Xu A, Zeng Y, et al. Effect of Al content on structure and properties of TiAlCN coatings prepared by magnetron sputtering. Journal of Alloys and Compounds 2014;617:81-5.
28.   Huang J, Xiang C, Li S, Zhao X, He G. Preparation, characterization and performance of Ti1− xAlxN/Ag/Ti1− xAlxN low-emissivity films. Applied Surface Science 2014;293:259-64.
29.    Zeng Y, Qiu Y, Mao X, Tan S, Tan Z, Zhang X, et al. Superhard TiAlCN coatings prepared by radio frequency magnetron sputtering. Thin Solid Films 2015;584:283-8.
30.  Kim I-s, Kumta PN. Hydrazide sol–gel synthesis of nanostructured titanium nitride: precursor chemistry and phase evolution. Journal of Materials Chemistry 2003;13:2028-35.
31.  Rose F, Marchon B, Rawat V, Pocker D, Xiao Q-F, Iwasaki T. Ultrathin TiSiN overcoat protection layer for magnetic media. Journal of Vacuum Science & Technology A 2011;29:051502.
32.   Kopani  M,  Mikula  M,  Pinčík  E,  Kobayashi H,  Takahashi M. FT IR spectroscopy of nitric acid oxidation of silicon with hafnium oxide very thin layer. Applied Surface Science 2014;301:24-7.
33.  Movassagh-Alanagh F, Abdollah-zadeh A, Asgari M, Ghaffari MA. Influence of Si content on the wettability and corrosion resistance of nanocomposite TiSiN films deposited by pulsed-DC PACVD. Journal of Alloys and Compounds 2018;739:780-92.
34.   Taborda JAP, Landázuri HR, Londoño LPV. Correlation between optical, morphological and compositional properties of Aluminum Nitride thin films by Pulsed Laser Deposition. IEEE Sensors Journal 2016;16:359-64.
35.    Ferrari   AC,   Robertson J.    Interpretation of Raman spectra of disordered and amorphous carbon. Physical review B 2000;61:14095.
36.  Shum P, Li K, Zhou Z, Shen Y. Structural and mechanical properties of titanium–aluminium–nitride films deposited by reactive close-field unbalanced magnetron sputtering. Surface and Coatings Technology 2004;185:245-53.
37.   Ikeda T, Satoh H. Phase formation and characterization of hard coatings in the Ti Al N system prepared by the cathodic arc ion plating method. Thin Solid Films 1991;195:99-110.
38.  Kimura A, Hasegawa H, Yamada K, Suzuki T. Metastable Ti1− xAlxN films with different Al content. Journal of materials science letters 2000;19:601-2.
39.   Zhou M, Makino Y, Nose M, Nogi K. Phase transition and properties of Ti–Al–N thin films prepared by rf-plasma assisted magnetron sputtering. Thin Solid Films 1999;339:203-8.