Document Type : Original Reaearch Article

Authors

1 Department of Materials Engineering, Bu-Ali Sina University, Hamedan

2 Department of Materials Engineering, Bu-Ali Sina University

Abstract

Titanium and its alloys are used as under-load implants due to the high corrosion resistant and mechanical properties. However, they show weakness in surface and tribology behavior. In this study, the protective composite TiB/TiB2 coating mechanism towards the diffusion pack cementation method and also their osteoconduction properties have been investigated via in-vitro experience. Boriding process was performed at the different temperatures (800 and 1000 ˚C) for certain soaking time (60 min). SEM micrographs showed a gradient B concentration regard to the formation of TiB2, Ti3B4, and TiB phases. XRD analysis also confirmed the formation mechanism and indicated that boriding at 800 ˚C tends to single phase TiB, while at 1000 ˚C tends to the formation of composite TiB/TiB2 coating. In-vitro study during two weeks immersion in simulated body fluid (SBF) showed that the TiB/TiB2 coating exchanges the bio-inert titanium surface to a bio-active surface resulting in an osteoconductive material formation. SEM image of TiB/TiB2 coating after two weeks immersion revealed that bone like apatite precipitants formed a porous structure like cancellous bone tissue on the titanium surface.

Keywords

  1. Park, J. P. and R. S. Lakes. Biomaterials: An introduction, 2nded. New York: Plenum Press, 1992.
  2. Gao A., Hang R., Bai L., Tang B., Chu P.K., Electrochemical surface engineering of titanium-based alloys for biomedical application, Electrochimica Acta, 2018, 271, 699-718.
  3. Bose S., Ford Robertson S., Bandyopadhyay A., Surface modification of biomaterials and biomedical devices using additive manufacturing, Acta Biomaterialia, 2018, 66, 6–22.
  4. Esfahani H., Dabir F., Taheri M., Sohrabi N. and Toroghinejad M. R., Sol–gel derived hydroxyapatite coating on TiB2/TiB/Ti substrate, Surface Engineering, 2012, 28, 526-531.
  5. Schmidt J., Boehling M., Burkhardt U. and Grin Y., Preparation of titanium diboride TiB2 by spark plasma sintering at slow heating rate, Science and Technology of Advanced Materials, 2007, 8, 376–382.
  6. Kulkan M., Makuch N., Dziarski P., Piasecki A., A study of nanoindentation for mechanical characterization of chromium and nickel borides’ mixtures formed by laser boriding, Ceramics International, 2014, 40, 6083–6094.
  7. Jamin M. Johnston, Matthew Jubinsky, Shane A. Catledge, Plasma boriding of a cobalt–chromium alloy as an interlayer for nanostructured diamond growth, Applied Surface Science, 2015, 328, 133–139.
  8. گلغدار م.ع.، اصول و کاربرد عملیات حرارتی فولادها  مرکز نشر دانشگاه صنعتی اصفهان، 1378.
    1. Campos-Silva I., Balankin A.S., Sierra A.H., Lopez-Perrusquia N., Escobar-Galindo R., Morales-Matamoros D., Characterization of rough interfaces obtained by boriding, Applied Surface Science, 2008, 255, 2596–2602.
    2. پورتر دی ای، ایسترلینگ کی ای، استحاله فازها در فلزات و آلیاژها، ترجمه محمدرضا افضلی، مرکز نشر دانشگاهی تهران، چاپ اول 1379، صفحه 77.
      1. Ataibis V., Taktak S., Characteristics and growth kinetics of plasma paste borided Cp–Ti and Ti6Al4V alloy, Surface & Coatings Technology, 2015, 279, 65–71.
      2. He X., Zhang G., Wang X., Hang R., Huang X., Qin L., Tang B., Zhang X., Biocompatibility, corrosion resistance and antibacterial activity of TiO2/ CuO coating on titanium, Ceramics International, 2017, 43, 16185–16195.
      3. Kokubo, T. and Takadama. H., How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006, 27, 2907.
      4. Ding H., Zhou G., Liu T., Xia M., Wang X., Biotribological properties of Ti/TiB2 multilayers in simulated body solution, Tribology International, 2015, 89, 62-66.
      5. Fan Z., Miodownik AP., Chandrasekaran L., Ward-Close M., Young’s moduli of in situ Ti/TiB composites obtained by rapid solidification processing, Journal Materials Science, 1994, 29(4):1127-1134.
      6.  سوری م.ح.، اشرفی زاده ف.، صالحی م.، برونایزینگ جامع قطعات فولادی برای صنایع کشور، دومین سمینار ملی مهندسی سطح (1380)
        1. Murray J.L., Liao P.K., Spear K.E., The B–Ti (boron–titanium) system, Bulletin of Alloy Phase Diagrams, 1986, 7 (6), 550.
        2. Sarma B., Tikekar N.M., Ravi Chandra K.S., Kinetics of growth of superhard boride layers during solid state diffusion of boron into titanium, Ceramics International, 2012, 38, 6795–6805.
        3. Sivakumar B., Singh R., Chandra Pathak L., Corrosion behavior of titanium boride composite coating fabricated on commercially pure titanium in Ringer's solution for bioimplant applications, Materials Science and Engineering C, 2015, 48, 243–255.
        4. Nakama Y., Ohtani, H., and Hasebe M., Thermodynamic Analysis of the Nb–Ti–B Ternary Phase Diagram, Materials Transactions, 2009, 50(5), 984-993.
        5. Stevens M.M., Biomaterials for bone tissue engineering, Materials Today, 2008, 11(5), 18-25.
        6. Shojai M.S., Khorasani M.T., Jamshidi A., 3-Dimensional cell-laden nano-hydroxyapatite/protein hydrogels for bone regeneration applications, Materials Science and Engineering C, 2015, 49, 835–843.