Document Type : Original Reaearch Article

Authors

1 Instructor, Department of Aerospace Engineering, Shahid Sattari University of Aeronautical Sciences & Techniques, Tehran, Iran

2 Chief Executive Officer, Nogara Ceram Fanavar Company, Materials & Energy Research Institute Growth Center, Karaj, Iran

3 Associate Professor, Department of Aerospace Engineering, Shahid Sattari University of Aeronautical Sciences & Techniques, Tehran, Iran

Abstract

In this article, Low-Pressure Injection Molding (LPIM) method was investigated as a method for forming zirconia (zirconium oxide) parts. It is one of the methods used for manufacturing engineering ceramics with complex shapes & high dimensional accuracy. In this method, a binder composition (paraffin & industrial waxes) is used as the plasticizing agent to shape zirconia particles. Different parameters such as temperature, pressure & injection time, mold temperature, etc. have been found to be effective in shaping the ceramic parts based on this method. Throughout this research, these parameters were examined, & their optimal values were obtained. The optimal injection temperature was in the range of 80-90 Celsius degree, injection pressure in the range of 3-5 bar, & injection time in the range of 10-15 seconds to form a crucible with the size of 130×85×75 mm (height×internal diameter×external diameter). This study also examined the FESEM images of the microstructure of parts in the injected, debonded, & sintered bodies. According to the findings, the zirconia crucible in this article shows notable similarity with the crucible made by Zircoa company with the code 3001 in terms of physical properties such as bulk density & apparent porosity.

Keywords

Main Subjects

  1. Ikuma, Y., Yoshimura, A., Ishida, K., & Komatsu, W. (1986). Phase transformation and toughening in MgO dispersed with ZrO2. In Tailoring Multiphase and Composite Ceramics, Springer. 295-304. https://link.springer.com/chapter/10.1007/978-1-4613-2233-7_22
  2. Muccillo, E.N.S., Tadokoro, S.K., & Muccillo, R. (2004). Physical characteristics & sintering behavior of MgO-doped ZrO2 Journal of Nanoparticle Research, 6, 301-305. https://doi.org/10.1023/B:NANO.0000034742.45278.2f
  3. Imran, A., Alam, S., Irfan, M., & Farooq, M. (2015). Micro Structural Study of Plasma-sprayed Zirconia-CaO Thermal Barrier Coatings, Materials Today: Proceedings, 2(10), 5318-5323. https://doi.org/10.1016/j.matpr.2015.11.043
  4. Chen, C.C., Cheng, W.Y., Lu, S.Y., Lin, Y.F., Hsu, Y.J., Chang, K.S., Kang, C.H., & Tung, K. L. (2010). Growth of zirconia and yttria-stabilized zirconia nanorod arrays assisted by phase transition, CrystEngComm, Vol 12(11), 3664-3669. http://dx.doi.org/10.1039/c000728e
  5. Duh, J. G., Dai, H. T., & Hsu, W. Y. (1988). Synthesis & sintering behaviour in CeO2-ZrO2 ceramics, Journal of Materials Science, 23(8), 2786-2791. https://doi.org/10.1007/BF00547451
  6. Suk, M. O., & Park, J. H. (2009). Corrosion behaviors of zirconia refractory by CaO-SiO2-MgO- CaF2 slag, Journal of the American Ceramic Society, 92(3), 717-723. http://dx.doi.org/10.1111/j.1551-2916.2008.02905.x
  7. Koley, S., Ghosh, A., Sahu, A.K., Tewari, R., & Suri, A. K. (2011). Correlation of compaction pressure, green density, pore size distribution and sintering temperature of a nano-crystalline 2Y-TZP-Al2O3 Ceramics International, 37(3), 731-739. https://doi.org/10.1016/j.ceramint.2010.11.003
  8. Farmer, S., C., Schoenlein, L. H., & Heuer. A. H. (1983). Precipitation of Mg2Zr5O12 in MgO‐Partially‐Stabilized ZrO2, Journal of the American Ceramic Society, 66(7), c107-c109. http://dx.doi.org/10.1111/j.1151-2916.1983.tb10600.x
  9. Rak, Z.S. (2000). Advanced shaping techniques in advanced ceramics. In CFI (Ceramic Forum International/Berichte der DKG) (Vol. 77). Available from: http://zircoa.com/product.coarse.grain/crucible.zirconia.html
  10. Leverkoehne, M., Coronel-Hernandez, J., Janssen, R., Claussen, N., Dirscherl, R., & Gorlov, I. (2001). Novel Binder System Based on Paraffin‐Wax for Low‐Pressure Injection Molding of Metall–Ceramic Powder Mixtures, Advanced Engineering Materials, 3(12), 995-998. http://dx.doi.org/10.1002/1527-2648(200112)3:12%3C995::AID-ADEM995%3E3.0.CO;2-D
  11. Nogueira, R., et al., "Low-Pressure Injection Molding of Alumina Ceramics Using a Carnauba Wax Binder: Preliminary Results", Journal of Key Engineering Materials, Vol 189-191, (2001), 67-72. http://dx.doi.org/10.4028/www.scientific.net/KEM.189-191.67
  12. Bauer, W., & Knitter. R. (2002). Development of a Rapid Prototyping Process Chain for the Production of Ceramic Microcomponents. Journal of Materials Science, 37, 3127-3140. http://dx.doi.org/10.1023/A:1016150126206
  13. Knitter, R., Bauer, W., Göhring, D., & Haußelt, J. (2001). Manufacturing of ceramic microcomponents by a rapid prototyping process chain. Advanced Engineering Materials, 3(1-2), 49-54. https://doi.org/10.1002/1527-2648(200101)3:1/2<49::AID-ADEM49>3.0.CO;2-H
  14. Krindges, I., Andreola, R., Perottoni, C. A., & Zorzi, J. E. (2008). Low‐pressure injection molding of ceramic springs. International Journal of Applied Ceramic Technology, 5(3), 243-248. http://dx.doi.org/10.1111/j.1744-7402.2008.02226.x
  15. Gadow, R., Kern, F, (2014), Comprehensive Hard Materials (pp.207- 230), Chapter: Advanced Manufacturing of Hard Ceramics, Elsevier, Sarin, V.k. 1016/B978-0-08-096527-7.00025-8. Zircoa. zirconia crucible. Available from: http://zircoa.com/product.coarse.grain/crucible.zirconia.html.
  16. Çetinel, F.A., Bauer, W., Knitter, R., & Haußelt, J. (2011). Factors affecting strength and shape retention of zirconia micro bending bars during thermal debinding. Ceramics International, 37(7), 2809-2820. https://doi.org/10.1016/j.ceramint.2011.04.076
  17. Çetinel, F.A., & Bauer. W. (2013). Ceramic micro parts. Part 2: Process-related factors influencing surface finish & shape retention during thermal debinding. Journal of the European Ceramic Society, Vol 33(15-16), 3135-3144 https://doi.org/10.1016/j.jeurceramsoc.2013.06.019
  18. Gorjan, L., Kosmač, T., & Dakskobler, A. (2014).  Single-step wick-debinding and sintering for powder injection molding, Ceramics International, 40(1), Part A, 887-891. https://doi.org/10.1016/j.ceramint.2013.06.083
  19. Zorzi, J.E., C.A. Perottoni., & Da Jornada. J.A.H. (2003). A new partially isostatic method for fast debinding of low-pressure injection molded ceramic parts. Materials Letters, 54(24-25), 3784-3788. https://doi.org/10.1016/S0167-577X(03)00179-4
  20. Gorjan, L., Dakskobler, A., & Kosmač, T. (2012). Strength evolution of injection‐molded ceramic parts during wick‐debinding, Journal of the American Ceramic Society, 95(1), 188-193. https://doi.org/10.1111/j.1551-2916.2011.04872.x
  21. Rahaman, M.N. (2017). Ceramic processing and sintering (Vol. 1). CRC press. https://doi.org/10.1201/9781315274126
  22. Jiang, L., Guo, S., Bian, Y., Zhang, M., & Ding, W. (2016). Effect of sintering temperature on mechanical properties of magnesia partially stabilized zirconia refractory. Ceramics International, 42, 10593-10598. https://doi.org/10.1016/j.ceramint.2016.03.136
  23. Sardarian, M., Mirzaee, O., & Habibolahzadeh. A. (2017). Mold filling simulation of low pressure injection molding (LPIM) of alumina: Effect of temperature and pressure, Ceramics International, 43(1), 28-34. https://doi.org/10.1016/j.ceramint.2016.07.224
  24. Gonzalez-Gutierrez, J., Stringari, G.B., & Emri, I. (2012). Powder Injection Molding of Metal and Ceramic Parts. Some critical issues for injection molding, 65-88. https://doi.org/5772/38070
  25. Medvedovski, E., & Peltsman. M. (2012). Low pressure injection moulding mass production technology of complex shape advanced ceramic components. Advances in Applied Ceramics, 111(5-6), http://dx.doi.org/10.1179/1743676112Y.0000000025
  26. Garrido, L.B., & Aglietti, E.F. (2004). Reaction-sintered mullite–zirconia composites by colloidal processing of alumina–zircon–CeO2 mixtures, Materials Science & Engineering: A, 369(1-2), 250-257. https://doi.org/10.1016/j.msea.2003.11.024
  27. Yoon, S., Van Tyne, C.J., & Lee. H. (2014). Effect of alumina addition on the microstructure & grain boundary resistance of magnesia partially-stabilized zirconia, Current Applied Physics, 14(7), 922-927. https://doi.org/10.1016/j.cap.2014.04.010