Document Type : Research Note Article

Authors

1 Associate Professor, Department of Aerospace Engineering, Shahid Sattari Aeronautical University of Science and Technology, Tehran, Tehran, Iran

2 M. Sc., Department Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Semnan, Iran

3 3 Aerospace Engineering, Shahid Sattari Aeronautical University of Science and Technology, Tehran, Tehran, Iran

Abstract

Cordierite ceramics are ceramics obtained from a combination of aluminum, magnesium, and silicon oxides. Given that cordierite ceramics have properties such as very low thermal expansion coefficient, low dielectric constant, low density, high hardness, low loss ratio, refractoriness, and good chemical and mechanical stability, they can be used for high temperature applications and tool making. In this study, solid-state synthesis method using oxide powders and silicone resin, followed by cold isostatic press (CIP) method was applied to produce cordierite ceramic with uniform density. Phase detection by X-ray diffraction and determination of density, microhardness, flexural strength, and dielectric constant was performed. The results showed that the α-cordierite phase was synthesized with a density of 2.5 gr/cm-3, hardness of 1151.6 HV, flexural strength of 131.4 ± 6 MPa, dielectric constant of 3.15, andloss tangent of 0.0048 in the frequency range of 8-12.5 GHz.

Keywords

Main Subjects

  1. El-Buaishi, N. M., Janković-Častvan, I., Jokić, B., Veljović, D., Janaćković, D., Petrović, R., "Crystallization behavior and sintering of cordierite synthesized by an aqueous sol-gel route", Ceramics International, Vol. 38, No. 3, (2012), 1835-1841. https://doi.org/1016/j.ceramint.2011.10.008
  2. Tang, B., Fang, Y. W., Zhang, S. R., Ning, H. Y., Jing, C. Y. , "Preparation and characterization of cordierite powders by water-based sol-gel method", Indian Journal of Engineering and Materials Sciences, Vol. 18, No. 3, (2011), 221-226. https://www.researchgate.net/publication/285532678_Preparation_and_characterization_of_cordierite_powders_by_water-based_sol-gel_method
  3. Chowdhury, A., Maitra, S., Das, H. S., Sen, A., Samanta, G. K., Datta, P., Helmers, H., Lustenhouwer, W. J., "Synthesis, properties and applications of cordierite ceramics, Part 2", InterCeram: International Ceramic Review, Vol. 24, No. 2, (2007), 245-248. https://doi.org/10.1144/sjg24030245
  4. Zhou, E., Dong, Y., Hampshire, S., Meng, G., "Utilization of sepiolite in the synthesis of porous cordierite ceramics", Applied Clay Science, Vol. 52, No. 3, (2011), 328-332. https://doi.org/10.1144/sjg24030245
  5. Radev, L., Samuneva, B., Mihailova, I., Pavlova, L., Kashchieva, E., "Sol-gel synthesis and structure of cordierite/tialite glass-ceramics", Processing and Application of Ceramics, Vol. 3, No. 3, (2009), 125-130. https://doi.org/10.2298/PAC0903125R
  6. Parcianello, G., "Advanced ceramics from preceramic polymers and fillers", Doctoral dissertation, University of Padua, (2011). http://www.paduaresearch.cab.unipd.it/4600
  7. De Aza, S., Espinosa de los Monteros, J., "Materiales cerámicos de cordierita", Boletín de la Sociedad Española de Cerámica y Vidrio, Vol. 6, No. 6, (1967), 731-744. http://www.boletines.secv.es/upload/196706731.pdf
  8. Benito, J. M., Turrillas, X., Cuello, G. J., De Aza, A. H., De Aza, S., Rodríguez, M. A., "Cordierite synthesis: A time-resolved neutron diffraction study", Journal of the European Ceramic Society, Vol. 32, No. 2, (2012), 371-379. https://doi.org/10.1016/j.jeurceramsoc.2011.09.010
  9. Zhang, L., "Foam and bulk cordierite ceramics: Preparation, characterization and modelling", Master Thesis, Universidade de Aveiro, (2010). http://www.hdl.handle.net/10773/3526
  10. Yalamaç, E., "Preparation of fine spinel and cordierite ceramic powders by mechano-chemical techniques", M. Sc. Thesis, (2004). https://www.gcris.iyte.edu.tr/handle/11147/3292
  11. Bernardo, E., Fiocco, L., Parcianello, G., Storti, E., Colombo, P., "Advanced ceramics from preceramic polymers modified at the nano-scale: A review", Materials, Vol. 7, No. 3, (2014), 1927-1956. https://doi.org/10.3390/ma7031927
  12. Colombo, P., Bernardo, E., Parcianello, G., "Multifunctional advanced ceramics from preceramic polymers and nano-sized active fillers", Journal of the European Ceramic Society, Vol. 33, No. 3, (2013), 453-469. https://doi.org/10.1016/j.jeurceramsoc.2012.10.006
  13. Yalamaç, E., Akkurt, S., "Additive and intensive grinding effects on the synthesis of cordierite", Ceramics International, Vol. 32, No. 7, (2006), 825-832. https://doi.org/10.1016/j.ceramint.2005.06.006
  14. Goren, R., Gocmez, H., Ozgur, C., "Synthesis of cordierite powder from talc, diatomite and alumina", Ceramics International, Vol. 32, No. 4, (2006), 407-409. https://doi.org/10.1016/j.ceramint.2005.03.016
  15. Goren, R., Ozgur, C., Gocmez, H., "The preparation of cordierite from talc, fly ash, fused silica and alumina mixtures", Ceramics International, Vol. 32, No. 1, (2006), 53-56. https://doi.org/10.1016/j.ceramint.2005.01.001
  16. Wu, J., Hwang, S., "Effects of (B2O3, P2O5) additives on microstructural development and phase‐transformation kinetics of stoichiometric cordierite glasses", Journal of the American Ceramic Society, Vol. 83, No. 5, (2000), 1259-1265. https://doi.org/10.1111/j.1151-2916.2000.tb01364.x
  17. Oliveira, F. A. C., Fernandes, J. C., "Mechanical and thermal behaviour of cordierite–zirconia composites", Ceramics International, Vol. 28, No. 1, (2002), 79-91. https://doi.org/10.1016/S0272-8842(01)00061-X
  18. Belous, A. V., Marikkannan, S. K., Ayyasamy, E. P., Belous, A. V., Marikkannan, S. K., Ayyasamy, E. P., "Synthesis, characterisation and sintering behaviour influencing the mechanical, thermal and physical properties of cordierite-doped TiO2", Journal of Materials Research and Technology, Vol. 2, No. 3, (2013), 269-275. https://doi.org/10.1016/j.jmrt.2013.03.016
  19. Koizumi, M., "Hot isostatic pressing theory and applications", Proceedings of Third International Conference on Hot Isostatic Pressing, Osaka, Japan, (1991). https://doi.org/10.1007/978-94-011-2900-8
  20. "Technologies and Applications || KOBE STEEL, LTD". https://www.kobelco.co.jp/english/products/ip/technology/cip.html
  21. Le, T. T., Valdez-Nava, Z., Lebey, T., Mazaleyrat, F., "Influence of cold isostatic pressing on the magnetic properties of Ni-Zn-Cu ferrite", AIP Advances, Vol. 8, No. 4, (2018), 47-54. https://doi.org/10.1063/1.4994210
  22. Parcianello, G., Bernardo, E., Colombo, P., "Cordierite ceramics from silicone resins containing nano-sized oxide particle fillers", Ceramics International, Vol. 39, No. 8, (2013), 8893-8899. https://doi.org/10.1016/j.ceramint.2013.04.083
  23. Zareie, H. R., Namaki Gharenav, L., Cheraghi, A., "Fabrication of cordierite glass ceramic with the use of silicone resin and investigating its mechanical properties", Journal of Advanced Materials and Technologies, 9, No. 2, (2020), 60-68. https://doi.org/10.30501/jamt.2020.204979.1051