Document Type : Original Reaearch Article

Authors

1 Department of basic Sciences, Faculty of Marine Sciences, Chabahar Maritime University, Chabahar, Iran.

2 Department of Physics, Aliabad Katoul Branch, Islamic Azad University, Aliabad Katoul, Iran.

Abstract

In this research, Zn/MWCNT porous nanocomposite and ZnO nanoparticles were prepared using Zn-based metal organic framework (MOF). Porous ZnO without MOF precursor was also synthesized. Structure, morphology and size of the films were analyzed by XRD and scanning electron microscope (SEM). Dye sensitized solar cells (DSSCs) were fabricated with ZnO/MWCNT nanocomposite and ZnO nanoparticles as photoanode. It was determined that ZnO based on MOF show higher surface area, more photon absorption and better short circuit current density compared with the reference ZnO without MOF precursor. Moreover, Effect of multiwall carbon nanotubes (MWCNT) on the porous structure of ZnO was studied and DSSC based on ZnO/MWCNT photoanode exhibited a short circuit current density of 23.89 mA cm-2, open circuit voltage of 0.68 V, and power conversion efficiency of 4.78%, which is almost 15% larger than that of the DSSC based on ZnO photoanode based on MOF (4.06%). The enhancement of efficiency in DSSCs made of ZnO/MWCNT nanocomposite can be attributed to the increase of the electrical conductivity of the photoanode, strong connection between conduction band of the anode with dye molecules and more contact surface of photoanode with electrolyte.

Keywords

  1. Li, W., Wu, X., Han, N., Chen, J., Qian, X., Deng, Y., Tang, W., Chen, Y., MOF-derived hierarchical hollow ZnO nanocages with enhanced low-concentration VOC gas-sensing performance, Sensors and Actuators B: Chemical,2016,225, 158-166.
  2.  Jiang, J., Recent development of in silico molecular modeling for gas and liquid separations in metal organic frameworks, Current Opinion in Chemical Engineering, 2012, 1, 138-144.

3.   Quartarone E., Dall'Asta, V., Resmini, A., Tealdi, C., Tredici, I.G., Tamburini, U.A., Mustarelli, P., Graphite-coated ZnO nanosheets as high-capacity, highly stable, and binder-free anodes for lithium-ion batteries, Journal of Power Sources, 2016, 320, 314-321.

4.    Tian, D., Zhou, X.L., Zhang, Y.H., Zhou, Z., Bu, X.H., MOF derived porous Co3O4 hollow tetrahedra with excellent performance as anode materials for lithium-ion batteries, Inorganic Chemistry, 2015, 54, 8159-8161.

5.   Zeng, G., Chen, Y., Chen, L., Xiong, P., Wei, M., Hierarchical cerium oxide derived from metal-organic frameworks for high performance supercapacitor electrodes, Electrochimica Acta, 2016, 222, 773-780.

6.       Salunkhe R.R., Kaneti Y.V., Yamauchi Y., Metal-organic framework-derived nanoporous metal oxides toward supercapacitor applications: progress and prospects, ACS Nano, 2017,11, 5293-5308.

7.   Li, J.R.,  Kuppler, R. J., Zhou, H. C., Selective gas adsorption and separation in metal-organic frameworks, Chemical Society Reviews, 2009, 38, 1477-1504.

8.    Xia, W., Mahmood, A., Zou, R., Xu, Q., Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion, Energy and Environment Sciences, 2015, 8, 1837-1866.

9.      Korneva,  G., Ye, H., Gogotsi, Y., Halverson, D., Fried, G., Bradley, J.C., Kornev K.G., Carbon nanotube loaded with magnetic particles, Nano Letters,2005, 5, 879-884.

10.  Su, Q., Li, J., Du, G.,  Xu, B.,  In situ synthesis of iron/nickel sulfide nanostructure filled carbon nanotube and their electromagnetic and microwave-absorbing properties, Journal of Physical Chemistry C,2011, 115, 1838-1842.

11.    Dresselhaus, M.S., Dresselhaus, G., Saito, R., Physics of carbon nanotubes, Carbon, 1995, 33, 883-891.

12.   Du, G., Li, W., Liu, Y., Filling carbon nanotubes with Co9S8 nanowires through in situ catalyst transition and extrusion, Journal of Physical Chemistry A, 2008, 112, 1890-1895.

13.    Denizalti, S.,  KhalafAli, A.,  Ela Mesut, Ç.,  SuleErten-Ela, E., Dye-sensitized solar cells using ionic liquids as redox mediator, Chemical Physics Letters, 2018, 691, 373-378.

14.    Hui Yap, M., Fow.. K. L., Zheng Chen, G., Synthesis and applications of MOF-derived porous nanostructures, Green Energy and Environment, 2017, 2, 218-245.

15.     Zou, Y., Qi, Z., Ma, Z., Jiang, W., Hu, R., Duan, J., MOF-derived porous ZnO/MWCNTs nanocomposite as anode materials for lithium-ion batteries, Journal of Electroanalytical Chemistry, 2017, 788, 184-191.

16.   Moezzi, A., McDonagh, A.M, Cortie, M.B., Zinc oxide particles: synthesis, properties and applications, Chemical Engineering Journal, 2012, 185, 1-22.

17.    Yang, M., Dong, B., Yang, X., Xiang, W., Ye, Z., Wang, E., Wan, L., Zhao, L., Wang, S., TiO2 nanoparticle/nanofiber-ZnO photoanode for the enhancement of the efficiency of dye sensitized solar cells, RSC Advances, 2017, 7, 41738-41744.

18.   Arof, A.K., Noor, I.M., Buraidah, M.H., Bandara, W.J., Careem, M.A., Albinsson, I., Mellander, B.E., Polyacrylonitrile gel polymer electrolyte based dye sensitized solar cells for a prototype solar panel, Electrochimica Acta, 2017, 251, 223-234.

19.   Liua, R.,  Qianga,  L.S., Yangb,  W.D.,  Liub H.Y., Enhanced conversion efficiency of dye-sensitized solar cells using Sm2O3 emodified TiO2 nanotubes, ‎Journal of Power Sources,2013, 223, 254-258.

20.   Jung H.G., Kang, Y.S., Sun Y.K., Anatase TiO2 spheres with high surface area and mesoporous structure via a hydrothermal process for dye-sensitized solar cells, Electrochimica Acta, 2010, 55, 4637-4641.

21.  Oku, T.,  Kobayashi, K., Suzuki,  A., Kikuchi K.,  Fabrication and characterization of TiO2-based dye-sensitized solar cells, Progress in Natural Science: Materials International, 2011, 21, 122-126.

22.  Benetti, D., Dembele, K.T., Benavides, J., Zhao H., Cloutier, N., Concina, I., Vomiero, A., Rosei F., Functionalized multi-wall carbon nanotubes/TiO2 composites as efficient photoanodes for dye sensitized solar cells, Journal of Materials Chemistry C, 2016, 4, 1-11.

23.    Liu, B.T., Liou, J.Y., High efficiency of dye-sensitized solar cells with two-layer mesoporous photoanodes fabricated in a low temperature process, Electrochimica Acta,2018, 261, 421-427.

24.    Xu, L., Xu, J., Hu, H.,Cui, C., Ding, Z., Yan, Y., Lin, P., Wang, P., Hierarchical submicroflowers assembled from ultrathin anatase TiO2 nanosheets as light scattering centers in TiO2 photoanodes for dye-sensitized solar cells, Journal of Alloys and Compounds, 2019, 776, 1002-1008.

25.  Zhang,L., Cole, J.M., Anchoring Groups for Dye-Sensitized Solar Cells, ACS Applied Materials and Interfaces,2015, 7, 3427-3455.

26.    Mozaffari, S., Nateghi, M.R., Borhani Zarandi, M., Effect of multi anchoring groups of catecholamine polymer dyes on the electrical characteristics of metal free dye-sensitized solar cells: A comparison study, Solar Energy, 2014,106, 63-71.

27.  Galoppini, E.,  Linkers for anchoring sensitizers to semiconductor nanoparticles. Coordination Chemistry Reviews, 2004, 248, 1283-1297.

28.     Frei, H., Fitzmaurice, D.J., Gratzel, M., Surface chelation of semiconductors and interfacial electron transfer. Langmuir, 1990, 6, 198-206.

29.  Mozaffari, S.,  Dehghan, M.,  Borhani Zarandi, M., Nateghi, M.R., Effect of single-wall carbon nanotubes on the properties of polymeric gel electrolyte dye-sensitized solar cells, Journal of Solid State Electrochemistry, 2014, 18, 655-663.

30.      Lim, S.J., Kang, Y.S., Won Kim, D., Dye-sensitized solar cells with quasi-solid-state cross-linked polymer electrolytes containing aluminum oxide, Electrochemistry Communication, 2011, 56, 2031-2035.