Document Type : Original Reaearch Article

Author

Department of Physics, Faculty of Science, Sahand University of Technology, Tabriz, Iran

Abstract

In this study, graphitic carbon nitride (g-C3N4) was made by thermal condensation of melamine at 450 and 550 °C. Moreover, the TiO2 porous nanostructured electrode was fabricated as a substrate for the g-C3N4 deposition by anodization method on a titanium foil (Ti) and then, reduced by electrochemical method to improve electrical conductivity (Re-TiO2 NP). The graphite carbon nitride layers were deposited on the porous nanostructured electrode (Re-TiO2 NP/Ti) by electrophoretic technique and the g-C3N4/Re-TiO2 NP/Ti electrodes were used as supercapacitor electrode. Comparison of the supercapacitive properties of the g-C3N4/Re-TiO2 NP/Ti electrodes showed that the electrochemical efficiency and specific capacitance of the g-C3N4 (450)/Re-TiO2 NP/Ti electrode is higher than the g-C3N4 (550)/Re-TiO2 NP/Ti electrode due to the increased active sites and charge transfer and the enhanced hydrophilicity as result of its high nitrogen content.

Keywords

  1. Bae, J., Song, M. K., Park, Y. J., Kim, J. M., Liu, M. and Wang, Z. L., Fiber supercapacitors made of nanowire‐fiber hybrid structures for wearable/flexible energy storage, Angewandte Chemie International Edition, 50 (2011) 1683-1687.
  2. Kotz, R. and Carlen, M., Principles and applications of electrochemical capacitors, Electrochimica. Acta, 45 (2000) 2483-2498.
  3. Miller, J. R. and Simon, P., Electrochemical capacitors for energy management, Science, 321 (2008) 651-652.
  4. Wang, Y., Song, Y. and Xia, Y., Electrochemical capacitors: mechanism, materials, systems, characterization and applications, Chemical Society Reviews, 45 (2016) 5925-5950.
  5. Zhao, Y., Xu, L., Huang, Sh., Bao, J., Qiu, J., Lian, J., Xu, L., Huang, Y., Xu, Y. and Li, H., Facile preparation of TiO2/C3N4 hybrid materials with enhanced capacitive properties for high performance supercapacitors, Journal of Alloys and Compounds, 702 (2017) 178-185.
  6. Dong, B., Li, M., Chen, Sh., Ding, D., Wei, W., Gao, G. and Ding, Sh., Formation of g-C3N4@Ni(OH)2 honeycomb nanostructure and asymmetric supercapacitor with high energy and power density, ACS Applied Materials and Interfaces, 9 (2017) 17890-17896.
  7. Li, Q., Xu, D., Guo, J., Ou, X. and Yan, F., Protonated g-C3N4@polypyrrole derived N-doped porous carbon for supercapacitors and oxygen electrocatalysis, Carbon, 124 (2017) 599-610.
  8. Tahir, M., Cao, Ch., Mahmood, N., Butt, F. K., Mahmood, A., Idrees, F., Hussain, S., Tanveer, M., Ali, Z. and Aslam, I., Multifunctional g-C3N4 nanofibers: a template-free fabrication and enhanced optical, electrochemical, and photocatalyst properties, ACS Applied Materials and Interfaces, 6 (2014) 1258-1265.
  9. Chang, X., Zhai, X., Sun, Sh., Gu, D., Dong, L., Yin, Y. and Zhu, Y., MnO2/g-C3N4 nanocomposite with highly enhanced supercapacitor performance, Nanotechnology, 28 (2017) 135705.
  10. Praus, P., Svoboda, L., Ritz, M., Troppova, I., Sihor, M. and Kocí, K., Graphitic carbon nitride: synthesis, characterization and photocatalytic decomposition of nitrous oxide, Materials Chemistry and Physics, 193 (2017) 438-446.
  11. Lu, L., Wang, G., Zou, M., Wang, J. and Li, J., Effects of calcining temperature on formation of hierarchical TiO2/g-C3N4 hybrids as an effective Z-scheme heterojunction photocatalyst, Applied Surface Science, 441 (2018) 1012-1023.
  12. Faraji, M., Three-dimensional nanostructures of multiwalled carbon nanotubes/graphene oxide/TiO2 nanotubes for supercapacitor applications, Applied Physics A, 122(2016) 697.
  13. Liu, J., Li, J., Dai, M., Hu, Y., Cui, J., Wang, Y., Tan, H. H. and Wu, Y., Photo-assisted synthesis of coaxial-structured polypyrrole/electrochemically hydrogenated TiO2 nanotube arrays as a high performance supercapacitor electrode, RSC Advances, 8 (2018) 13393-13400.
  14.  Kim, Ch., Kim, S., Hong, S. P., Lee, J. and Yoon, J., Effect of doping level of colored TiO2 nanotube arrays fabricated by electrochemical self-doping on electrochemical properties, Physical Chemistry Chemical Physics, 18 (2016) 14370-14375.
  15. Liu, N., Schneider, C., Freitag, D., Hartmann, M., Venkatesan, U., Muller, J., Spiecker, E. and Schmuki, P., Black TiO2 nanotubes: cocatalyst-free open-circuit hydrogen generation,Nano Letters, 14 (2014) 3309-3313.
  16. Kim, H. J., Kim, J. and Hong, B., Effect of hydrogen plasma treatment on nano-structured TiO2 films for the enhanced performance of dye-sensitized solar cell, Applied Surface Science, 274 (2013) 171-175.