Document Type : Original Reaearch Article

Authors

1 1Department of Ceramic, Materials and Energy Research Center, Karaj Iran

2 Department of Ceramic, Materials and Energy Research Center, Karaj Iran

Abstract

In this study, hematite nanoparticles and hematite nanoparticles doped with Ti, Sn doped have been synthesized and deposited on FTO glass for photo anode application. To make a thin layer of hematite by hydrothermal method, ammonia and ferric chloride solution react indirectly at 120 ̊C for 24 h for better adhesion of synthesized iron hydroxide on FTO glass. The   synthesized samples were calcined at 550o C. XRD analysis was confirmed that FeOOH-coated were subsequently converted to the rhombohedral structure of the a-Fe2O3.  A complete synthesis study was performed using FTIR analysis and using UV-Vis results, the bandgap energy of the samples was calculated with and without the additive. The finite structure and morphology of synthesized powders were also compared with FESEM images. The results showed that the addition of 1% wt of titanium caused the synthesis of uniform spherical nanoparticles leads to alow electrons bandgap energy of 1.85 eV.

Keywords

  1.  

    1.   K. Sivula, F. Le Formal, M. Grtzel, “Solar Water Splitting: Progress Using Hematite (α -Fe2O3) Photoelectrodes’, ChemSusChem 2011, 432 – 449
    2.  B. Klahr, S. Gimenez, F. F. Santiago, J.  Bisquert, T. Hamann, “electrochemical and Photoelectrochemical Investigation of Water Oxidation with Hematite Electrodes”, Energy & Environmental Science
    3.  Y. Ling, G. Wang, D. A. Wheeler, J.  Z. Zhang, Y.  Li, “Sn-Doped Hematite Nanostructures for Photoelectrochemical Water Splitting”, Nano Lett. 2011, 11, 2119–2125

     

    1.  M. Chirita, I. Grozescu , “Fe2O3 – Nanoparticles, Physical properties and their photochemical

    and Photoelectrochemical applications”, Chem. Bull. "POLITEHNICA" Univ. (Timişoara)                                                                                                                            Volume 54(68), 1, 2009.

     

    1.  J. Liu, Ch.  Liang,  G.  Xu, Zh. Tian, G. Shao, L. Zhang, “Ge -doped hematite nano sheets with tunable doping level , structure and improved photo electrochemical performance”, Nano Energy ( 20 13 ) 2 , 3 2 8 – 33 6.

     

    1.   S. Palmas,  A.M. Polcaro, J. Rodriguez Ruiz, A. Da Pozzo, M. Mascia, A. Vacca,  “TiO2 photoanodes for electrically enhanced water splitting, International Journal of Hydrogen Energy”,  35, 2010, 6561–6570.

     

     

    1. J . Eliasa , M . Bechelany, I . Utke , R. Er ni , D. Hosseini , J. Michler, L. Philippe , “Urchin-inspired zinc oxide as building blocks for nanostructured solar cells”,  Nano Energy 1 (2012) 696 –705.

     

    1.  P. Dias, T. Lopes, L.  Meda,L. Andrade, A. Mendes, Photoelectrochemical water splitting using WO3 photoanodes: the substrate and temperature roles, Phys. Chem. Chem. Phys., 2016,18, 5232-5243.

     

    1.   K. Itoh and J. O. Bockris, “Stacked thin‐film photoelectrode using iron oxide , Journal of Applied Physics 56, 874 (1984).

     

    1.  D. Kim, D. M. Andoshe, Y. S. Shim, C. W. Moon, W. Sohn, S. Choi, T. L. Kim, M. Lee, H. Park, K. Hong, K. C. Kwon, J. M. Suh, J.S. Kim, J. H. Lee, H. W. Jang,  “Toward High-Performance Hematite Nanotube Photoanodes: Charge-Transfer Engineering at Heterointerfaces”, ACS Appl. Mater. Interfaces, 2016, 8 (36), pp 23793–23800.

     

    1.   P. S. Shinde, A. Annamalai, J. H. Kim, S. H. Choi, J. S. Lee, J. S. Jang,” Exploiting the dynamic Sn diffusion from deformation of FTO to boost the photocurrent performance of hematite photoanodes”, Solar Energy Materials & Solar Cells 141 (2015) 71–79

     

     

    1.  M. Farahmandjou, F. Soflaee, “Low Temperature Synthesis of α-Fe2O3 Nano-rods Using Simple Chemical  Route”,  JNS 4 (2014) 413- 418.

     

     

    1.  M. V. Nikolic, D. L. Sekulic, N. Nikolic, M. P. Slankamenac, O. S. Aleksic, H. Danninger, E. Halwax, V. B. Pavlovic, P. M. Nikolic, “Structural and Electrical Properties of Ti Doped α-Fe2O3”, Science of Sintering, 45 (2013) 281-292.