Document Type : Original Reaearch Article

Authors

1 Faculty of new Sciences and technologies, Department of Life Science Engineering, University of Tehran, Tehran, Iran

2 Department of Computer Engineering, Golestan University, Gorgan, Golestan, Iran.

3 3Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran

4 Technical and Vocational Department, Gorgan, Iran

Abstract

 Bone defect is one of the important challenges of medical science. Today, the synthesis of a suitable
scaffold has been developed. In this paper, new bioactive composite scaffolds based on kappa-carrageenan/fibrobin
nanofibers were synthesized and characterized for bone regeneration applications. The fibroin nanofibers were prepared
by electrospinning, then the chopped electrospun nanofibers were incorporated to Kappa-carrageenan solution (0.5%
w/v) in different ratios as a reinforcer. Finally, 3D scaffolds were fabricated by Freeze-drying. The results of scanning
electron microscopy showed the highly porous structure with the interconnected porous. The porosity percentage and
average pore size of the scaffolds were suitable for bone cells implantation and propagation. In addition, Energy
Dispersive X ray (EDS) technique has proved
Precipitation of Ca-P on the surfaces. The biocompatibility evaluation of
fabricated scaffolds was done using MTT indirect assay.
 

Keywords

  1.   Blom A. (V) Which scaffold for which application?. Current Orthopaedics. 2007 Aug 1;21(4):280-7.
  2. Yuan J, Zhang WJ, Liu G, Wei M, Qi ZL, Liu W, Cui L, Cao YL. Repair of canine mandibular bone defects with bone marrow stromal cells and coral. Tissue Engineering Part A. 2010 Jan 27;16(4):1385-94.
  3. Wang JL, Zin YT, Tzeng CC, Lin CI, Lin SW, Chang GL. The assay of bone reaction after implantation of calcium sulfate and a composite of calcium sulfate and calcium phosphate. Journal of Medical and biological Engineering. 2003 Dec 1;23(4):205-12.
  4. مجاهدیان، م.، امکان سنجی تشکیل لایه ی کلسیم فسفات بر روی بستری از کیتوسان سولفونه و بررسی رشد سلول های استئوبلاست بر روی آن، کارشناسی ارشد، دانشگاه تهران، تهران، 1393.
  5. Lanza,R., Langer,R., and Vacanti,J., Principle of Tissue Engineering, Elsevier Academi press, Third ed. P. 6, 2007.
  6. Puppi D, Chiellini F, Piras AM, Chiellini E. Polymeric materials for bone and cartilage repair. Progress in Polymer Science. 2010 Apr 1;35(4):403-40.
  7. Peppas NA, Hilt JZ, Khademhosseini A, Langer R. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Advanced materials. 2006 Jun 6;18(11):1345-60.
  8. Deng J, She R, Huang W, Dong Z, Mo G, Liu B. A silk fibroin/chitosan scaffold in combination with bone marrow-derived mesenchymal stem cells to repair cartilage defects in the rabbit knee. Journal of Materials Science: Materials in Medicine. 2013 Aug 1;24(8):2037-46.
  9. Hardy JG, Römer LM, Scheibel TR. Polymeric materials based on silk proteins. Polymer. 2008 Sep 23;49(20):4309-27.
  10. Campo VL, Kawano DF, da Silva Jr DB, Carvalho I. Carrageenans: Biological properties, chemical modifications and structural analysis–A review. Carbohydrate Polymers. 2009 Jun 10;77(2):167-80.
  11. Yiu, H., Handbook of food science, technology, and engineering. CRC Press. pp. 528–. ISBN 978-1-57444-552-7. Retrieved 10 December 2011.
  12. Lim YM, Gwon HJ, Choi JH, Shin J, Nho YC, Jeong SI, Chong MS, Lee YM, Kwon IK, Kim SE. Preparation and biocompatibility study of gelatin/kappa-carrageenan scaffolds. Macromolecular research. 2010 Jan 1;18(1):29-34.
  13. 13. Li L, Ni R, Shao Y, Mao S. Carrageenan and its applications in drug delivery. Carbohydrate polymers. 2014 Mar 15;103:1-1.
  14. روشن فر،ف.، امکان سنجی و ارزیابی تشکیل کلسیم فسفات بر روی داربست فیبرویین ابریشم-کاراگینان حاوی نانوالیاف فیبرویین به منظور استفاده در مهندسی بافت استخوان، کارشناسی ارشد، دانشگاه تهران، تهران، 1394

15. Nourmohammadi J, Roshanfar F, Farokhi M, Nazarpak MH. Silk fibroin/kappa-carrageenan composite scaffolds with enhanced biomimetic mineralization for bone regeneration applications. Materials Science and Engineering: C. 2017 Jul 1;76:951-8.

16. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity?. Biomaterials. 2006 May 1;27(15):2907-15.

17. Mirahmadi F, Tafazzoli-Shadpour M, Shokrgozar MA, Bonakdar S. Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering. Materials science and engineering: c. 2013 Dec 1;33(8):4786-94.

18. Reignier J, Huneault MA. Preparation of interconnected poly (ε-caprolactone) porous scaffolds by a combination of polymer and salt particulate leaching. Polymer. 2006 Jun 14;47(13):4703-17.

19. Gomes,M.E., A bone tissue engineering strategy based on starch scaffolds and bone marrow cells cultured in a flow perfusion bioreactor, 2004.

20.Hadisi Z, Nourmohammadi J, Mohammadi J. Composite of porous starch-silk fibroin nanofiber-calcium phosphate for bone regeneration. Ceramics International. 2015 Nov 30;41(9):10745-54.