Document Type : Research Review Article

Authors

1 Materials and Energy research Center (MERC), Imam Khomeini Blvd., Meshkindasht, Alborz, I.R. Iran.

2 Department of Materials Science and Engineering, Sharif University of Technology, Azadi Ave., P.O. Box 11155-9466, Tehran, I.R. Iran.

Abstract

Li2FeSiO4 is one of the most promising cathode materials for application in high energy density Li-ion batteries. In order to evaluate the Li2FeSiO4 theoretically, its four known polymorphs are considered using density functional theory (DFT) framework. First, different DFT methods (LSDA/+U, GGA/+U) were employed for the best known polymorph (Pmn21) in two atomic-radial frame works (RFe=2.0 and RFe=1.75). Then, the results were compared by the experimentally published data in order to determine better atomic-radial framework for each DFT methods, i.e. LSDA(+U) and GGA(+U). The selected optimum methods were used for evaluation of the other polymorphs. Structural properties, structural stability after Li extraction, relative thermodynamic stability, theoretical voltage and electrical properties were calculated for all the polymorphs. In all these investigations polymorphs properties have been compared. Results showed structural stability of all polymorphs after extraction of one Li per formula. The most energetically stable polymorphs were determined to be P21/n and mod-Pmn21, respectively. Using the performed theoretical studies, we proposed a number of mechanisms to understand behaviors of the cathode material.

Keywords

 
1.             ح. ا. صالحی, مجله مواد و فن آوری های پیشرفته, (1388), 2  (2), 145-150.
2.             م. کزازی, م. ر. واعظی and ا. ک. زاده, مجله مواد و فن آوری های پیشرفته, (1392), 2  (3), 79-85.
3.             س. حسینی, ح. ا. صالحی and م. ث. خواه, مجله مواد و فن آوری های پیشرفته, (1388), 2  (4), 341-345.
4.   A. Nytén, A. Abouimrane, M. Armand, T. Gustafsson and J. O. Thomas, Electrochemistry Communications, (2005), 7  (2), 156-160.
5.   M. M. Kalantarian, S. Asgari and P. Mustarelli, Journal of Materials Chemistry A, (2013), 1  (8), 2847-2855.
6.   B. Xu, D. Qian, Z. Wang and Y. S. Meng, Materials Science and Engineering: R: Reports, (2012), 73  (5), 51-65.
7.   M. M. Kalantarian, S. Asgari, D. Capsoni and P. Mustarelli, Physical Chemistry Chemical Physics, (2013), 15  8035-8041.
8.   M. M. Kalantarian, S. Asgari and P. Mustarelli, Journal of Materials Chemistry A, (2014), 2  (1), 107-115.
9.   Z. Gong and Y. Yang, Energy & Environmental Science, (2011), 4  (9), 3223-3242.
10. J. W. Fergus, Journal of Power Sources, (2010), 195  (4), 939-954.
11. A. Nytén, S. Kamali, L. Häggström, T. Gustafsson and J. O. Thomas, Journal of Materials Chemistry, (2006), 16  (23), 2266-2272.
12. A. Liivat and J. O. Thomas, Solid State Ionics, (2011), 192  (1), 58-64.
13. K. Zaghib, A. Ait Salah, N. Ravet, A. Mauger, F. Gendron and C. Julien, Journal of Power Sources, (2006), 160  (2), 1381-1386.
14. R. Dominko, D. E. Conte, D. Hanzel, M. Gaberscek and J. Jamnik, Journal of Power Sources, (2008), 178  (2), 842-847.
15. R. Dominko, M. Bele, M. Gaberscek, A. Meden, M. Remskar and J. Jamnik, Electrochemistry Communications, (2006), 8  (2), 217-222.
16.
17. S.-i. Nishimura, S. Hayase, R. Kanno, M. Yashima, N. Nakayama and A. Yamada, Journal of the American Chemical Society, (2008), 130  (40), 13212-13213.
18. A. Saracibar, A. Van der Ven and M. Arroyo-de Dompablo, Chemistry of Materials, (2012), 24  (3), 495-503.
19. A. R. Armstrong, N. Kuganathan, M. S. Islam and P. G. Bruce, Journal of the American Chemical Society, (2011), 133  (33), 13031-13035.
20. C. Eames, A. Armstrong, P. Bruce and M. Islam, Chemistry of Materials, (2012), 24  (11), 2155-2161.
21. R. Gummow, N. Sharma, V. Peterson and Y. He, Journal of Solid State Chemistry, (2012), 188  32-37.
22. C. Sirisopanaporn, C. Masquelier, P. G. Bruce, A. R. Armstrong and R. Dominko, Journal of the American Chemical Society, (2010), 133  (5), 1263-1265.
23. H. J. Monkhorst and J. D. Pack, Physical Review B, (1976), 13  (12), 5188-5192.
24. F. Tran and P. Blaha, Physical review letters, (2009), 102  (22), 226401.
25. M. M. Kalantarian and S. Asgari, Journal of Academic and Applied Studies, (2017).
26. G. Mali, C. Sirisopanaporn, C. Masquelier, D. Hanzel and R. Dominko, Chemistry of Materials, (2011), 23  (11), 2735-2744.
27. C. Sirisopanaporn, R. Dominko, C. Masquelier, A. R. Armstrong, G. Mali and P. G. Bruce, Journal of Materials Chemistry, (2011), 21  (44), 17823-17831.
28. M. Arroyo-de Dompablo, M. Armand, J. Tarascon and U. Amador, Electrochemistry Communications, (2006), 8  (8), 1292-1298.
29. S. Wu, Z. Zhu, Y. Yang and Z. Hou, Computational Materials Science, (2009), 44  (4), 1243-1251.
30. R. Dominko, I. Arčon, A. Kodre, D. Hanžel and M. Gaberšček, Journal of Power Sources, (2009), 189  (1), 51-58.
31. R. Dominko, Journal of Power Sources, (2008), 184  (2), 462-468.
32. M. Dahbi, S. Urbonaite and T. Gustafsson, Journal of Power Sources, (2012), 205  456-462.
33. M. Kalantarian, M. Oghbaei, S. Asgari, S. Ferrari, D. Capsoni and P. Mustarelli, Journal of Materials Chemistry A, (2014), 2  (45), 19451-19460.
34. M. M. Kalantarian, M. Oghbaei, S. Asgari, L. Karimi, S. Ferrari, D. Capsoni, M. Bini and P. Mustarelli, Journal of Academic and Applied Studies, (2017).
35. G. Redhammer, G. Roth, W. Paulus, G. André, W. Lottermoser, G. Amthauer, W. Treutmann and B. Koppelhuber-Bitschnau, Physics and Chemistry of Minerals, (2001), 28  (5), 337-346.
36. C. J. Cramer and D. G. Truhlar, Physical Chemistry Chemical Physics, (2009), 11  (46), 10757-10816.
37. B. Kaduk, T. Kowalczyk and T. Van Voorhis, Chemical Reviews, (2011), 112  (1), 321-370.