Authors

1 Malek-e-Ashtar University of Technology, Faculty of Materials & Manufacturing Processes, Tehran, Iran

2 Malek-e-Ashtar University of Technology, Faculty of Materials & Manufacturing Processes, Tehran, Iran.

Abstract

 In the present paper, ZrB2-SiC nanocomposite was developed by pressureless sintering method. Micro
sized AlN powder and SiC powderes at nano and micro-sized scale were used as additive. In order to produce
composite samples, the primary powders were milled and blended in planetary ball mill apparatus with rotational speed
of 200rpm and then processed using hot pressing (80ᵒC and 100MPa), cold isostatic press and sintering at 2150ᵒC. The
values of relative density and porosity of samples were measured to evaluate the effect of presence of micro-sized SiC
and SiC nano particles simultaneously on the pressureless sintering behavior of ZrB
2-SiC. In order to compare the
microstructure and mechanical properties of samples Scanning Electron microscopy (SEM), equipped with EDS
spectroscopy, XRD analysis, hardness and toughness tests were used. The results show that as the volume percentage of
nano SiC decreases to 15 vol.% and AlN increases to 7.5 vol.% the hardness (17.1 GPa), toughness (5.7 MPa.m
1/2) and
relative density (98.1%) increase.
 

Keywords

 1. Justin J.F. and Jankowiak, A., Ultra High Temperature Ceramics: Densification, Properties and Thermal Stability, Onera journal, 3 (2011) 1-11.
2. Guo S.Q., Densification of ZrB2-Based Composites and Their Mechanical and Physical Properties: A Review, Journal of Europian Ceramic Society, 29 (2009) 995- 011.
3. Han, J., Hu, P., Zhang, X., Meng, S. and Han, W., Oxidation-resistant ZrB2–SiC composites at 2200ᵒC, Composites Science and technology, 68(3) (2008) 799- 806. 
4. زینب نصیری، "بررسی تأثیر الیاف کربن بر خواص نانوکامپوزیت ZrB2-SiCبه روش زینتر بدون فشار" پایان نامه کارشناسی ارشد، مجتمع مواد و فناوریهای ساخت دانشگاه صنعتی مالک اشتر، .
5. Asl, M.S. and M.G. Kakroudi, Fractographical assessment of densification mechanisms in hot pressed ZrB 2-SiC composites. Ceramics International, 2014, 40(9): p. 15273-15281.
6. He-Jun Li, Yu-Lei Zhang, Qian-Gang Fu, Ke-Zhi Li, Jian Wei, Dang-She Hou, “Oxidation behavior of SiC nanoparticle-SiC oxidation protective coating for carbon/carbon composites at 1773 K” Carbon 45 (2007) 2692–2716.
7. Zeynab Nasiri, Mehri Mashhadi, Alireza Abdollahi, “Effect of short carbon fiber addition on pressureless densification and mechanical properties of ZrB2–SiC–Csf nanocomposite”, Int. Journal of Refractory Metals and Hard Materials 51 (2015) 216–223.
8. Johnson, S., M. Gasch, and M. Stackpoole, Assessment of the state of the art of ultra high temperature ceramics, 2009.
9. Nasiri, M. Mashhadi, “Effect of sintering temperature and SiC particles size on the microstructure and mechanical properties of ZrB2-SiC composites”, 1st international symposium on nano technology, Isfahan, Iran, 2016.
10. ankratz, L., J. Stuve, and N. Gokcen, Thermodynamic data for mineral technology, 1984.
11. Zhang, H., et al., Pressureless sintering of ZrB 2–SiC ceramics: the effect of B4C content. Scripta Materialia, 2009 60(7), 559-562.
12. Han, W., et al., Effect of AlN as sintering aid on hot-pressed ZrB2–SiC ceramic composite. Journal of Alloys and Compounds, 2009 471(1) 488-491.
13. Liang, J., et al., Research on thermal shock resistance of ZrB2–SiC–AlN ceramics using an indentation-quench method. Journal of Alloys and Compounds, 2010 493(1) p. 695-698.
14. Abdollahi, A. and M. Mashhadi, Effect of B 4 C, MoSi 2, nano SiC and micro-sized SiC on pressureless sintering behavior, room-temperature mechanical properties and