Authors

Islamic Azad University, Ahvaz Branch, Department of Materials and Metallurgical Engineering , Ahvaz, Iran.

Abstract

In this study, effect of aluminum alloying element on KIC and ac of Hadfield hypereutectoid steel was investigated by using the impact test results. For this purpose, initially 2 casting blocks were prepared from Hadfield steel (without addition of Al and with 1.68 wt% Al) by using coreless induction furnace. After casting, all blocks were austenitized in 1100°C for 2 hours and immediately quenched in pure water. In the next step, uniaxial tensile test, Vickers hardness test and Charpy impact test were applied on specimens at room temperature. Evaluation of microstructures were conducted by optical microscopy and the fractured surfaces were observed by scanning electron microscope. The results of impact tests and fracture toughness empirical relationships were used to evaluate the KIC and ac of the Hadfield steel. The optical microscopy images indicated that by increasing the amount of aluminum in the chemical composition of Hadfield manganese austenitic steel, austenite grains size increased from 111.9 to 142.5 micrometer. The results of tensile test, hardness test and impact test represents an increase in yield strength and hardness, and reduction of failure strain and impact energy of Hadfield steel because of adding aluminum to its composition. Calculations of fracture toughness and critical crack length for Hadfield steel showed that the addition of aluminum to steel leads to reduction of fracture toughness from 163.7 to 104.5 Mpa.(m)1/2 and reduced the critical crack length at surface from 0.014 to 0.007m.

Keywords

  1. Barannikova, S. A., Li, Y., Malinovsky, A., Pestsov, D., “Study of Localized Plastic Deformation of Hadfield Steel Single Crystals Using Speckle Photography Technique”, Key Engineering Materials, 683(2016) 84-89.
  2. Limooei, M. B. and Hosseini, SH., “Optimization of Heat Treatment in Manganese Steel by Taguchi Method”, Mech. Mater., 598 (2014) 43-46.
  3. Limooei, M. B. and Hosseini, SH., “Optimization of properties and structure with addition of titanium in hadfield steels", Conf. of Metal 2012, Brono, Czech Republic, 2012.
  4. Najafabadi, V. N., Amini, K. and Alamdarlo, M. B., “Investigating the effect of titanium addition on the wear resistance of Hadfield steel”, Res. Technol., 111 (2014) 375 - 382.
  5. Magdaluyo, E. R. and et al., “Gouging Abrasion Resistance of Austenitic Manganese Steel with Varying Titanium”, of the World Congress on Engineering 2015, London, English, 2015.
  6. نجف آبادی، و.، مناجاتی زاده، ح. و امینی، ک.، “بررسی تأثیر تیتانیم بر بهبود خواص فولاد هادفیلد ASTM A128-C”، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، دوره 7 (1392) 54 - 45.
  7. Srivastava, A. K. and Das, K., “In-situ Synthesis and Characterization of TiC-Reinforced Hadfield Manganese Austenitic Steel Matrix Composite”, Iron and Steel Institute of Japan , 49 (2009) 1372-1377.
  8. Srivastava, A. K. and et al., “Corrosion Behaviour of TiC-Reinforced Hadfield Manganese Austenitic Steel Matrix In-Situ Composites”, J. Metal, 5 (2015) 11-17.
  9. خیاط، م.، خیراندیش، ش. و عباسی، م.، “تاثیر آلومینیم بر ریزساختار فولاد آستنیتی منگنزی هادفیلد در شرایط مختلف عملیات حرارتی”، مجموعه مقالات دومین همایش بین المللی و هفتمین همایش مشترک انجمن مهندسی متالورژی ایران و انجمن ریختهگری ایران، سمنان، 1392.  
  10. Tian, X. and Zhang, Y., “Mechanism on the Effect of Al upon the γ→ε Martensite Transformation in the Fe-Mn Alloys”, Mater. Sci. echnolo., 12 (1996) 369-372.
  11. Abbasi, M., Kheirandish, SH., Kharrazi, Y., Hejazi, J., “On the comparison of the abrasive wear behavior of aluminum alloyed and standard Hadfield steels”, Wear, 268 (2010) 202-207.
  12. عباسی، م.، خیراندیش، ش.، خرازی، ی. و حجازی، ج.، “بررسی تاثیر برخی عوامل اصلی بر رفتار سایشی فولاد هادفیلد”، نشریه علوم و مهندسی سطح، شماره 7 (1388) تابستان 1388.
  13. Moghaddam, E. G., Varahram, N. and Davami, P., “On the comparison of microstructural character -istics and mechanical properties of high-vanadium austenitic manganese steels with the Hadfield steel”, Sci. and Eng. A, 532 (2011) 260-266.
  14. Agunsoye, J. O., Isaac, T. S. and Abiona, A. A., “On the Comparison of Microstructure Characteristics and Mechanical Properties of High Chromium White Iron with the Hadfield Austenitic Manganese Steel”, JMMCE, 1 (2013) 24-28.
  15. El-Mahallawi, I., Abdel-karim, A. and Naguib, A., “Evaluation of effect of chromium on wear performance of high manganese steel”, Mater. Sci. Technol., 17 (2001) 1385-1390.
  16. Lindroos, M. and et al., “The deformation, strain hardening, and wear behavior of chromium-alloyed Hadfield steel in abrasive and impact conditions”, Lett., 57 (2015) 1-11.
  17. Salemi Golezani, A., “The Effect of Microstructure on Estimation of the Fracture Toughness (KIC) Rotor Steel Using Charpy Absorbed Energy (CVN)”, Adv. Mater. Proc., 1 (2013) 11-17.
  18. Kim, S. H. and et al., “Estimation of fracture toughness transition curves of RPV steels from Charpy impact test data”, Nuclear Eng. Des., 212 (2002) 49-57.
  19. Annual book of ASTM standards, "ASTM 128 A / 128 M, Standard specification for steel castings, austenitic manganese", ASTM Int., 1 (2012) 1-4.
  20. Annual book of ASTM E92-82 , “Standard Test Method for Vickers Hardness of Metallic Materials”, ASTM Int., 3 (2003) 1-9.
  21. Annual book of ASTM E8 / E8M-15a, “Standard Test Methods for Tension Testing of Metallic Materials”, ASTM Int., 03.01 (2015) 1-8.
  22. Annual book of ASTM A370-14, “Standard Test Methods and Definitions for Mechanical Testing of Steel Products”, ASTM Int., 20-29 (2014) 1-6.
  23. Barsom, J. M., Rolfe, S. T., “Correlations between KIc and Charpy V-notch test results in the transition-temperature range”, ASTM STP 466, (1970) 281-302.
  24. هرتزبرگ، م. ر.، اکرامی، ع. ا. (مترجم)، “تغییر شکل و مکانیک شکست مواد و آلیاژهای مهندسی”، دانشگاه صنعتی شریف. موسسه انتشارات علمی، 1382.
  25. Lee, Y. K. and Choi, C. S., “Driving Force for γ→ε Martensitic Transformation and Stacking Fault Energy of γ in Fe-Mn Binary System”, Metallurgical and Material Transaction A, 31A (2000) 355-360.
  26. Zuidema, B. K., Subramanyam, D. K., Leslie, W. C., “The effect of Aluminium on the work hardening and wear resistance of Hadfield manganese steel”, Metallurgical Transactions A, 18 A 91987) 1629-1639.
  27. دیتر، ج. ای.، شهیدی، ش. (مترجم)، “متالورژی مکانیکی”، مرکز نشر دانشگاهی، چاپ پنجم، تهران، 1392.
  28. China, K. G., Kang, C. Y., Shin, S. Y., Hong, S., Lee, Al addition on deformation and fracture mechanisms in two high manganese TWIP steels”, Sci. Eng. A, 528 (2011) 2922-2928.
  29. Parka, K., Jin, K. G., Han, S. H., Hwang, S. W., Choi, K., Lee, C. S., “Stacking fault energy and plastic deformation of fully austenitic high manganese steels: Effect of Al addition”, Sci. Eng. A, 527 (2010) 3651-3661.
  30. Abbasi, M., Kheirandish, SH., Kharrazi, Y., Hejazi, J., “The fracture and plastic deformation of aluminum alloyed Hadfield steels”, Eng. A, 513-514 (2009) 72-76.
  31. عباسی، م. و همکارانش، “ارزیابی مکانیزم شکست در فولاد هادفیلد”، مجموعه مقالات ششمین همایش مشترک انجمن مهندسین متالورژی و انجمن علمی ریخته گری ایران، تهران، ایران، 1391.